Problems and perspectives of seed production activity of forage ecotypes in Sardinia

Vargiu M.

in

Porqueddu C. (ed.), Ríos S. (ed.).
The contributions of grasslands to the conservation of Mediterranean biodiversity

Zaragoza : CIHEAM / CIBIO / FAO / SEEP
Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 92

2010
pages 145-149

Article available on line / Article disponible en ligne à l’adresse :

http://om.ciheam.org/article.php?IDPDF=801233

To cite this article / Pour citer cet article

http://www.ciheam.org/
http://om.ciheam.org/
Problems and perspectives of seed production activity of forage ecotypes in Sardinia

M. Vargiu
Agris Sardegna, Dept of Research in Vegetable Production, Viale Trieste 111, 09123 Cagliari (Italy)
e-mail: mvargiu@agrisricerca.it

Abstract. In Sardinia the size of forage seed market does not seem to justify the economic convenience of a local production. Nevertheless, apart from economic reasons, several other aspects suggest the opportunity to undertake this activity. The development of seed production involving the native forage species could satisfy the requirement of adapted material to the Mediterranean environment, for pastures improvement and long lasting forage crops. Moreover this activity could represent an extra-income for agro pastoral farms. The high biodiversity of Sardinian pastures allows to exploit and select several native forage species. In the last decade, collection and evaluation studies of spontaneous pastures genotypes have been carried out. An experiment concerning different aspects of forage seed production, from planting to threshing, was planned. Several species (Medicago arabica, M. polymorpha, Trifolium cherleri, T. glomeratum, T. resupinatum, T. spumosum, Lolium rigidum, L. multiflorum and Plantago lanceolata) have been considered in order to study their seed production characteristics and harvestability.

Keywords. Biodiversity – Environment improvement – Ecotype valorisation – Multiuse system – Forage seed production – Harvestability.

I – Introduction

1. Forage seed sector in Sardinia

In Sardinia the most of forage seeds have an extra regional provenience. In 2007, 3,550 tons of seeds were commercialized (48% grasses, 45% legumes, 1.6% other species and 6% mixtures) (ISTAT, 2009). Considering the usual sowing densities, 116,000 hectares of forage crops were cultivated. In particular 41,000 hectares of legumes (32,000 of Trifolium spp., 2,000 of alfalfa,
6,000 of vetch, 350 of sulla, 700 of broad bean); 68,310 hectares of grasses (68,000 of Lolium spp., 200 of Festuca spp. and 110 of Poa pratensis); 1,500 hectares of other species and 5,000 hectares of mixtures. In the last twenty years the trend responds strictly to the PAC directives and the agricultural/pastoral crisis. In the decade 1990-2000 forage cultivations registered an increase of 8% from about 185,000 to 200,000 hectares, while other crops decreased, such as cereals (-29%), pulses (-42%), potatoes (-34%) and vegetables (-29%), as well as permanent pastures (-33%, from 790,000 to 525,000 hectares). On the contrary, industrial crops raised from 260 to 10,300 hectares. After the 2000 forage crops have had a decrease of 80,000 hectares, becoming 135,000 hectares in 2008.

According to these data, in Sardinia the small size of forage seed market (about 5-6 millions euros) does not seem to justify the convenience to undertake a local seed production activity. Nevertheless, apart from economic reasons, other aspects suggest the opportunity of its realization, possibly supported by the Institutions.

First, a seed production addressed to the native forage species could fulfill the need of adapted materials for the Mediterranean environments, in order to ensure the success of pastures improvement and forage cultivations in long-lasting and eco-compatible way. Besides, the rising demand for multifunctional uses, such as cover crops for parks, gardens or fruit trees, botanical/didactical/tourist itineraries and re-establishment of degraded areas (escarpments, quarries, fire breaks, etc.) (Osman et al., 1990; Caredda et al., 2002) have to be taken into account.

Sardinian pastures, characterized by high biodiversity (Spanu et al., 1997; Vargiu et al., 2002), represent a source of forage ecotypes useful for forage and/or multiuse purposes, with regard to their specific biometric characteristics.

2. Studies on native forage seeds

In some pastoral sites of Sardinia a collection activity concerning native forage species, though not available on the seed market, was carried out (Vargiu and Spanu, 1999). The most interesting materials were tested in different pedo-climatic conditions for forage and environmental uses (Vargiu et al., 2000, 2008). In the last years, our studies regard the technical-economic possibility to undertake seed production activity of the mentioned ecotypes. The evaluation focuses on their agronomic performances, on the bases of seasonal and annual weather variability.

This paper reports one year observation (2008/2009) concerning seed production characteristics and harvestability of some forage ecotypes.

II – Materials and methods

The trial was carried out in the experimental farm of San Michele (39°10’ N, 3°20’ E, 150 m a.s.l.) in southern Sardinia (Cagliari), on a medium-deep soil limited in nutrients except for potassium (typic palexeralf soil, USDA Soil Taxonomy). Long term rainfall is 460 mm, scarcely distributed from October to May. Winter temperatures seldom reach 0°C, while average maximum temperature is 32°C in July.

The studied ecotypes belong to the species Medicago arabica, M. polymorpha, Trifolium cherleri, T. glomeratum, T. resupinatum, T. spumosum and Lolium rigidum, L. multiflorum and Plantago lanceolata.

Plots were adapted to use the conventional harvest machineries. Their size ranged from 1.40 hectares to 50 m² depending on seed availability. No experimental design was planned because it was preferred to focus on harvest problems in open field conditions.
The contributions of grasslands to the conservation of Mediterranean biodiversity

The ecotypes were planted on 30 December 2008. It was a late planting owing to continuous rain during the autumn period. Sowing densities for different ecotypes were: Medicago arabica and M. polymorpha 30 kg/ha, Trifolium cherleri, T. glomeratum, T. spumosum, Lolium rigidum and L. multiflorum 25 kg/ha, T. resupinatum and Plantago lanceolata 15 kg/ha.

Fertilization was performed on 18 February 2009 (40 units of nitrogen per hectare). Chemical weeding was performed on 6 April 2009 employing 2,4 DB on legumes and tribenuron methyl on grasses. In spring some cleaning-mowing were done in order to remove the most developed weeds. Flowering dates were monitored. Seed harvesting started on 17 June 2009 utilizing a modified grain thresher. The earliest specie was Lolium rigidum followed by Trifolium spp., Plantago lanceolata and Lolium multiflorum. Medicago polymorpha was harvested with a “Horwood Bagshaw” vacuum seed harvester. In T. cherleri, T. spumosum and T. resupinatum this machinery was also used to harvest the basal pods sited below the cutting height of grain harvester. Medicago arabica pods were picked up manually because of the presence of an annual medic weed with very similar seeds.

III – Results and discussion

The registered annual rainfall was 581 mm (Fig. 1). Persistent rains in autumn and winter caused a late and difficult sowing. Dry conditions in early spring reduced the vegetative growing. Winter temperatures never went below 0°C.

The less developed and competitive legumes species (T. glomeratum, T. resupinatum, T. spumosum) were covered by weeds. The treatment with 2,4 DB was not effective on weeds and caused phytotoxic effects.

Concerning flowering Medicago polymorpha ecotype proved to be the earliest genotype (7th April, i.e. 10 days earlier M. arabica and Plantago lanceolata).

The two ecotypes of T. glomeratum and T. resupinatum showed a difference of 10 days in the flowering date (the 13th and the 22nd May), preserving the characteristics showed in their original sites. Among weeds, a spontaneous annual medic (Medicago polymorpha L.) was very widespread. Seed production of Trifolium spp. harvested with the grain harvester did not contain seeds from medic weed. On the contrary, seed production of T. cherleri and T. spumosum harvested with vacuum-seed harvester were not completely separable from the medic weed seeds. The percentage of vacuum-harvested seed yield respect to the total amount ranged from 30% in T. spumosum to 60% in T. cherleri (Nutt and Loi, 1999).

Seed production of species and ecotypes of the same specie resulted very different in quantity.
and characteristics (Table 1). Seed yield ranged from 84 to 485 kg/ha in *M. arabica* and *L. rigidum* respectively; 1000 seed weight ranged from 0.3 g in *Plantago lanceolata* to 3.2 g in *L. rigidum*. The number of seeds per square metre ranged from 3,994 in *M. arabica* to 66,940 in *Plantago lanceolata*.

Table 1. Seed production parameters of ecotypes

<table>
<thead>
<tr>
<th>Specie and accession</th>
<th>Plot size (m²)</th>
<th>Plot yield (kg)</th>
<th>Yield per hectare (kg)</th>
<th>1000 seed weight (g)</th>
<th>Seed number N/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantago lanceolata 133</td>
<td>400</td>
<td>8.08</td>
<td>202</td>
<td>0.302</td>
<td>66,940</td>
</tr>
<tr>
<td>Lolium multiflorum 96</td>
<td>50</td>
<td>0.65</td>
<td>130</td>
<td>2.555</td>
<td>5,096</td>
</tr>
<tr>
<td>Lolium rigidum 144</td>
<td>400</td>
<td>19.41</td>
<td>485</td>
<td>3.220</td>
<td>15,069</td>
</tr>
<tr>
<td>Trifolium cherleri 16</td>
<td>400</td>
<td>8.78</td>
<td>219</td>
<td>2.085</td>
<td>10,523</td>
</tr>
<tr>
<td>Trifolium glomeratum 40</td>
<td>400</td>
<td>6.04</td>
<td>151</td>
<td>0.445</td>
<td>33,944</td>
</tr>
<tr>
<td>Trifolium glomeratum 128</td>
<td>400</td>
<td>11.22</td>
<td>281</td>
<td>0.308</td>
<td>53,595</td>
</tr>
<tr>
<td>Trifolium resupinatum 122</td>
<td>200</td>
<td>2.41</td>
<td>120</td>
<td>0.573</td>
<td>20,995</td>
</tr>
<tr>
<td>Trifolium resupinatum 125</td>
<td>50</td>
<td>0.65</td>
<td>129</td>
<td>0.483</td>
<td>26,791</td>
</tr>
<tr>
<td>Trifolium spumosum 87</td>
<td>400</td>
<td>9.15</td>
<td>229</td>
<td>1.928</td>
<td>11,867</td>
</tr>
<tr>
<td>Medicago arabica 63</td>
<td>300</td>
<td>2.51</td>
<td>84</td>
<td>2.093</td>
<td>3,994</td>
</tr>
<tr>
<td>Medicago polymorpha 74</td>
<td>14,100</td>
<td>530.00</td>
<td>376</td>
<td>2.677</td>
<td>14,041</td>
</tr>
</tbody>
</table>

IV – Conclusions

The studied ecotypes showed different performances for seed production. In Mediterranean environment, especially for the less competitive legumes, the weed control is the main problem. Given the ineffectiveness of chemical control, it would be necessary to study some agronomic strategies such as: "false sowing", crop rotations and conservative soil tillage techniques (Giambalvo et al., 1999a,b) in order to reduce the impact of weeding.

The present agricultural/zoootechnical crisis makes it difficult to evaluate the convenience to undertake a forage seed production activity in Sardinia only on the basis of economic reasons. On the other hand, the importance to save and valorise the local pasture plants biodiversity and the necessity of adapted materials to our environment (Loi et al., 1995), for pasture improvement, forage crops and multiuse systems, suggest to continue this activity with the aim to develop the local seed production of native forage ecotypes.

References

