Productive potential of six almond cultivars under regulated deficit irrigation

Miarnau X., Alegre S., Vargas F.

in

Zakynthinos G. (ed.).
XIV GREMPA Meeting on Pistachios and Almonds

Zaragoza : CIHEAM / FAO / AUA / TEI Kalamatas / NAGREF
Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 94

2010
pages 267-271

Article available on line / Article disponible en ligne à l’adresse :

http://om.ciheam.org/article.php?IDPDF=803314

To cite this article / Pour citer cet article

Productive potential of six almond cultivars under regulated deficit irrigation

X. Miarnau*, S. Alegre* and F. Vargas**

*Estació Experimental de Lleida, IRTA, Av. Rovira Roure 191, 25198 Lleida (Spain)
**IRTA Mas de Bover, Ctra. Reus-El Morell km 3.8, 43120 Constantí, Tarragona (Spain)

Abstract. Spanish almond production has been based on traditional cultivars mainly planted in marginal land and under rainfed conditions (300-650 mm per year). Currently, the new cultivars released and the increase of irrigated almond areas is allowing a change in almond culture. In the year 2000 a trial was planted in Les Borges Blanques (Lleida) with the aim to assess the productive potential of six late almond blooming cultivars ('Ferragnès', 'Francolí', 'Glorieta', 'Guara', 'Lauranne' and 'Masbovera') under regulated deficit irrigation (2500 m³/ha per year). In the first years the six cultivars assessed performed well, reaching the equivalent kernel production of 2000 kg/ha in 2007 (8th year). Some other traits like blooming date, harvest date, vegetative growth and kernel quality were also recorded in this trial.

I – Introduction

Spanish almond production has been based on traditional early blooming cultivars mainly planted in marginal land and under rainfed conditions (300-650 mm per year). Only 6% of almond surface in Spain is irrigated (MAPA, 2007). The low productivity in these orchards (150 kg/ha of kernel) is mainly due to drought, the occurrence of frosts at blooming time and a deficient pollination (Felipe, 2000).

An important change in cultivar composition in Spain took place from the 80s, first with the release of two late blooming cultivars, 'Ferragnès' and 'Ferraduel' (INRA France) that were widely grown, and later in the 90s with the release of late blooming self-compatible cultivars from breeding programs of Spain and France: 'Guara', 'Lauranne', 'Masbovera', 'Glorieta', 'Francolí', 'Antoñeta' and 'Marta' (Felipe and Socias i Company, 1987; Grasselly, 1991; Vargas and Romero, 1994; Dicenta et al., 1999).

Currently, in Spain the increase of irrigated areas (with limited quantities of water) is allowing a big change in almond orchards, because this crop can be profitable under regulated deficit irrigation (Girona, 2007; Vargas and Romero, 2007).
A cultivar trial was started in 2000 at Les Borges Blanques (Lleida), with the aim of assessing the productive potential of the new cultivars, with regulated deficit irrigation.

II – Materials and methods

The cultivars included in the trial were: ‘Ferragnès’, ‘Francoli’, ‘Glorieta’, ‘Guara’, ‘Lauranne’ and ‘Masbovera’ released by different breeding programs. The origin of these cultivars is reflected in Table 1. All the cultivars are late blooming. ‘Guara’, ‘Lauranne’ and ‘Francoli’ are self-compatible, whereas ‘Ferragnès’, ‘Glorieta’ and ‘Masbovera’ are self-incompatible. Cultivars were grafted onto GF-677.

Table 1. Genetic origin of six cultivars tested (Felipe and Socias i Company, 1987; Vargas and Romero, 1994; Grasselly and Duval, 1997)

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Origin</th>
<th>Crossing year</th>
<th>Breeding program</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Guara’</td>
<td>Clonal selection</td>
<td>1983</td>
<td>CITA</td>
</tr>
<tr>
<td>‘Ferragnès’</td>
<td>‘Cristomorto’ × ‘Aï’</td>
<td>1960</td>
<td>INRA</td>
</tr>
<tr>
<td>‘Lauranne’</td>
<td>‘Ferragnès’ × ‘Tuono’</td>
<td>1978</td>
<td>INRA</td>
</tr>
<tr>
<td>‘Francoli’</td>
<td>‘Primorskyi’ × ‘Tuono’</td>
<td>1976</td>
<td>IRTA</td>
</tr>
<tr>
<td>‘Glorieta’</td>
<td>‘Primorskyi’ × ‘Cristomorto’</td>
<td>1975</td>
<td>IRTA</td>
</tr>
<tr>
<td>‘Masbovera’</td>
<td>‘Primorskyi’ × ‘Cristomorto’</td>
<td>1975</td>
<td>IRTA</td>
</tr>
</tbody>
</table>

The trial was established at Les Borges Blanques (Lleida), where the soil is clay-loam texture, deep and stone free. The average rainfall of this area is 350 mm per year. The cultivars are cultivated under regulated deficit irrigation (2500 m³/ha per year).

The grafted trees were planted, in January of 2000, at 6 m × 6 m tree spacing. A randomized blocs design, 3 repetitions and 11 trees per plot, were used.

Blooming date, ripening time, growth habit, branching density and training and pruning ease were observed. Tree vigour (trunk section at 30 cm high from the ground) production and nut characteristics [nut and kernel weight, double kernels (%), shelling percentage (%) and kernel appearance (score 1-9)] were recorded too.

Data production and nut characteristics were analyzed by ANOVA test, and means separations were performed by Duncan’s Multiple Range Test by SAS Enterprise Guide 3.0 (2004).

III – Results and discussion

In Table 2 the average full blooming date can be observed. The average full flowering date of ‘Glorieta’, ‘Guara’ and ‘Masbovera’ was 3-4 days before ‘Francoli’, ‘Ferragnès’ and ‘Lauranne’.

Table 2. Average full blooming date, 5 years records (2003-2007)

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Years</th>
<th>Average full blooming date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2003</td>
<td>2004</td>
</tr>
<tr>
<td>‘Glorieta’</td>
<td>16 March</td>
<td>10 March</td>
</tr>
<tr>
<td>‘Guara’</td>
<td>18 March</td>
<td>15 March</td>
</tr>
<tr>
<td>‘Masbovera’</td>
<td>16 March</td>
<td>15 March</td>
</tr>
<tr>
<td>‘Francoli’</td>
<td>19 March</td>
<td>15 March</td>
</tr>
<tr>
<td>‘Ferragnès’</td>
<td>18 March</td>
<td>15 March</td>
</tr>
<tr>
<td>‘Lauranne’</td>
<td>21 March</td>
<td>17 March</td>
</tr>
</tbody>
</table>
The average ripening time of 'Guara', 'Lauranne' and 'Francoli' was at the end of August and beginning of September, and of 'Glorieta', 'Ferragnès' and 'Masbovera' was about mid September (Table 3).

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Years</th>
<th>Average ripening time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2005 2006 2007</td>
<td></td>
</tr>
<tr>
<td>'Guara'</td>
<td>24 August 27 August 1 September</td>
<td>28 August</td>
</tr>
<tr>
<td>'Lauranne'</td>
<td>1 September 30 August 5 September</td>
<td>2 September</td>
</tr>
<tr>
<td>'Francoli'</td>
<td>5 September 6 September 31 August</td>
<td>4 September</td>
</tr>
<tr>
<td>'Glorieta'</td>
<td>7 September 6 September 15 September</td>
<td>9 September</td>
</tr>
<tr>
<td>'Ferragnès'</td>
<td>5 September 21 September 14 September</td>
<td>13 September</td>
</tr>
<tr>
<td>'Masbovera'</td>
<td>6 September 21 September 17 September</td>
<td>15 September</td>
</tr>
</tbody>
</table>

In Fig. 1 the strong vigour of 'Masbovera', 'Francoli', 'Ferragnès' and 'Glorieta' can be observed, and they are more vigorous than 'Lauranne' and 'Guara'. Vigour differences are more evident in last years.

Fig. 1. Vigour of six cultivars tested, accumulated trunk section (cm²).

Some other traits like growth habit, branching density and training and pruning ease are given in Table 4. All cultivars have very easy training and pruning, except 'Guara' that presents a drooping growth habit and needs a careful training and pruning. Cultivars characteristics are similar to the reported by other authors (Duval and Grasselly, 1994; Grasselly and Duval, 1997; Vargas and Romero, 1999; Felipe, 2000; Cordeiro et al., 2005; Vargas et al., 2007).
Table 4. Tree growth habit, branching density and training and pruning ease

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Growth habit</th>
<th>Branching density</th>
<th>Training and pruning ease</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Guara'</td>
<td>Drooping</td>
<td>Scarce</td>
<td>Difficult</td>
</tr>
<tr>
<td>'Ferragnès'</td>
<td>Medium-upright</td>
<td>Mid</td>
<td>Very easy</td>
</tr>
<tr>
<td>'Lauranne'</td>
<td>Medium spreading</td>
<td>Mid</td>
<td>Easy</td>
</tr>
<tr>
<td>'Francoli'</td>
<td>Medium</td>
<td>Mid</td>
<td>Very easy</td>
</tr>
<tr>
<td>'Glorieta'</td>
<td>Medium-upright</td>
<td>Mid</td>
<td>Very easy</td>
</tr>
<tr>
<td>'Masbovera'</td>
<td>Medium-upright</td>
<td>Mid</td>
<td>Very easy</td>
</tr>
</tbody>
</table>

All six cultivars presented a good productive behaviour in this trial. In Tables 5 and 6 the mean kernel production by tree and the equivalent kernel production (kg/ha) are given. Frosts have not happened during the trial, but in 2003 unfavourable climatic conditions avoided bees foraging and consequently the crossed pollination of self-incompatible cultivars.

Table 5. Mean and accumulated kernel production per tree (kg/ha)

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Mean kernel production per tree</th>
<th>Accumulated kernel production per tree (2002-2007)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2002</td>
<td>2003</td>
</tr>
<tr>
<td>'Lauranne'</td>
<td>0.05 a</td>
<td>2.4 a</td>
</tr>
<tr>
<td>'Ferragnès'</td>
<td>0.02 bc</td>
<td>0.8 b</td>
</tr>
<tr>
<td>'Francoli'</td>
<td>0.08 b</td>
<td>2.1 a</td>
</tr>
<tr>
<td>'Glorieta'</td>
<td>0.06 bc</td>
<td>0.9 b</td>
</tr>
<tr>
<td>'Masbovera'</td>
<td>0.01 c</td>
<td>0.6 b</td>
</tr>
<tr>
<td>'Guara'</td>
<td>0.16 a</td>
<td>2.7 a</td>
</tr>
</tbody>
</table>

a, b, c, d: values with the same letter are not significantly different (Duncan, p< 0.05).

Table 6. Accumulated kernel production per tree and mean and accumulated equivalent kernel production (kg/ha)

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Mean equivalent kernel production (kg/ha)</th>
<th>Accumulated equivalent kernel production (kg/ha) (2002-2007)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2002</td>
<td>2003</td>
</tr>
<tr>
<td>'Lauranne'</td>
<td>13</td>
<td>669</td>
</tr>
<tr>
<td>'Ferragnès'</td>
<td>5</td>
<td>212</td>
</tr>
<tr>
<td>'Francoli'</td>
<td>21</td>
<td>585</td>
</tr>
<tr>
<td>'Glorieta'</td>
<td>17</td>
<td>240</td>
</tr>
<tr>
<td>'Masbovera'</td>
<td>1</td>
<td>169</td>
</tr>
<tr>
<td>'Guara'</td>
<td>44</td>
<td>747</td>
</tr>
</tbody>
</table>

' Lauranne', 'Guara', 'Francoli', 'Glorieta' and 'Ferragnès' stood out for their bearing earliness (2003-2004). 'Francoli' was the earliest bearing, but showed alternate bearing. All cultivars showed a high production capacity, overcoming 1300 kg of kernel per ha in 2006. So far 'Lauranne', 'Ferragnès' and 'Francoli' were outstanding, with more than 7000 kg of kernel/ha of accumulated production.

Nut and kernel features are presented in Table 7. 'Ferragnès', 'Guara', 'Glorieta' and 'Masbovera' stood out for their high kernel weight (1.5-1.6). The only cultivar that presented a
high percentage of double kernels was 'Guara' with 14.3%. The shelling percentage only varied between 27.2 and 33.7. All the cultivars showed an acceptable appearance, standing out 'Glorieta', 'Guara' and 'Masbovera'.

Table 7. Nut characteristics. Mean values of 4 years observations (2004-2007) on nut and kernel weight (g), double kernels (%), shelling percentage and kernel appearance (score 1-9). Nut number per sample = 50

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Nut weight (g)</th>
<th>Kernel weight (g)</th>
<th>Double kernels (%)</th>
<th>Shelling percentage (%)</th>
<th>Kernel appearance (1-9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Guara'</td>
<td>4.6 d</td>
<td>1.5 c</td>
<td>14.3 a</td>
<td>32.5 b</td>
<td>6.4 b</td>
</tr>
<tr>
<td>'Ferragnès'</td>
<td>4.9 c</td>
<td>1.6 a</td>
<td>0.3 c</td>
<td>33.7 a</td>
<td>6.1 c</td>
</tr>
<tr>
<td>'Lauranne'</td>
<td>3.8 f</td>
<td>1.2 e</td>
<td>1.6 b</td>
<td>32.1 b</td>
<td>6.1 c</td>
</tr>
<tr>
<td>'Francoli'</td>
<td>4.2 e</td>
<td>1.3 d</td>
<td>1.2 b</td>
<td>31.4 b</td>
<td>5.6 d</td>
</tr>
<tr>
<td>'Glorieta'</td>
<td>5.8 a</td>
<td>1.6 b</td>
<td>1.7 b</td>
<td>27.2 c</td>
<td>7.0 a</td>
</tr>
<tr>
<td>'Masbovera'</td>
<td>5.4 b</td>
<td>1.5 c</td>
<td>0.0 c</td>
<td>28.1 c</td>
<td>6.5 b</td>
</tr>
</tbody>
</table>

a, b, c, d, e, f: values with the same letters are not significantly different (Duncan, p< 0.05)

IV – Conclusions

Over the first years, the six cultivars assessed in the trial performed very well under regulated deficit irrigation, reaching important productions from the 5th year. These are preliminary results, during the coming the productive potential of all six cultivars will be further assessed.

References

