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Abstract.  Prospects to assess and explore largely untapped plant genetic resources (PGR) collections to 
search for climate change related traits, such as drought and heat tolerance, as well as pest and disease 
resistance, are possible through new approaches such as the focused identiication of germplasm strategy 
(FIGS). FIGS approach is based on the paradigm that any germplasm is likely to relect the selection pressures 
of the environment under which it evolved. The approach uses trait and environmental data (climate data 
including phenology data) to develop a priori information based on the quantiication of the trait-environment 
relationship. If a dependency between the trait and the environment is detected, the a priori information is then 
used to deine subsets of accessions with a high probability of containing the sought after traits. The subsets 
of accessions are then used for a posteriori evaluation. Recent research comparing a priori and a posteriori 
information supports the assertion that FIGS can be used as an effective tool to search for traits of resistance 
to pests and diseases as well as traits to adapt to climate change. This paper presents and discusses some 
of the recent results where FIGS was used to develop subsets with high probability of inding desirable traits, 
such as resistance to stripe (yellow) rust, in durum wheat. It also addresses ways in which current FIGS based 
models could be further enhanced by working the ways in which the environmental data is presented to the 
models, thereby improving the detection of traits associated with climate change adaptation.

Keywords.  Genetic resources – FIGS – Accessions – Pests – Diseases – Resistance – Climate change.

Recherche pour des caractères liés au changement climatique dans des collections de ressources 
phytogénétiques en utilisant la stratégie d’identiication ciblée du matériel génétique (FIGS)

Résumé. L’évaluation et l’utilisation des collections de ressources phytogénétiques largement inexploitées 
pour rechercher des caractères liés au changement climatique, comme la sécheresse et la tolérance à la 
chaleur, ainsi que la résistance aux organismes nuisibles et aux maladies, sont aujourd’hui possibles grâce 
à de nouvelles approches telles la stratégie d’identiication ciblée du matériel génétique (FIGS). L’approche 
FIGS repose sur le paradigme que tout matériel génétique est susceptible de reléter les pressions de 
sélection de l’environnement dans lequel il a évolué. Cette stratégie utilise des caractères et des données 
environnementales (données climatiques, y compris les données phénologiques) pour développer une 
information a priori basée sur la quantiication de la relation caractère-environnement. Si une dépendance 
entre le caractère et l’environnement est détectée, l’information a priori est alors utilisée pour déinir des sous-
ensembles d’accessions ayant une forte probabilité de porter les caractères cherchés. Les sous-ensembles 
d’accessions sont ensuite utilisés pour une évaluation a posteriori. Des recherches récentes comparant les 
informations a priori et a posteriori permettent d’afirmer que la FIGS peut être utilisée comme un outil eficace 
pour la recherche de caractères de résistance aux organismes nuisibles et aux maladies tout comme aux 
caractères d’adaptation au changement climatique. Dans cet article, on présente et on discute des résultats 
récents de l’application de la FIGS pour développer des sous-ensembles avec une haute probabilité de 
trouver les caractères cherchés, comme la résistance à la rouille jaune, chez le blé dur. On discute également 
les possibilités d’améliorer les modèles sur lesquels est basée actuellement la FIGS, en travaillant sur la 
façon dont les données environnementales sont intégrées dans les modèles, améliorant ainsi la détection des 
caractères associés à l’adaptation au changement climatique. 
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Changement climatique. 

I – Introduction

Prospects to assess and explore largely untapped plant genetic resources (PGR) collections 
for agronomically important traits, particularly those linked to climate change-adaptation, are 
possible through new approaches such as the Focused Identiication of Germplasm Strategy 
(FIGS). Climate change, which is the result of greenhouse gas (GHG) emissions, is causing the 
atmosphere to heat up (Mendelsohn & Dinar 2009). Crops such as wheat are reported to be more 
vulnerable to heat stress than drought (Semenov & Shewry 2011). High temperatures during the 
reproductive phase can reduce the number of kernels per spike, which is an important component 
of yield (Semenov & Shewry 2011). Both heat and drought stresses are expected to increase in 
their frequency and intensity in dry areas (IPCC 2012) such as central North America, Northern 
Africa, Central Asia, West Asia and Western Australia. Although the global climate models 
(GCMs) differ substantially, they all tend to indicate signiicant temperature increases in these 
areas (Girvetz et al. 2009). Further, this increase in temperature as a result of GHG emissions is 
expected to increase depending on emissions scenarios and the extent of mitigation implemented 
measures to curb their effects (Howden et al. 2007, Mendelsohn and Dinar 2009). 

Plant genetic resources have contributed enormously towards increased yield in crops (Hoisington 
1999) and are a ready source of trait’s variation (Qualset 1975). For example, a wheat landrace 
from Turkey that was conserved in a genebank in 1948 was later discovered, (in the 1980s) to 
carry genes that are resistant to a range of fungal diseases, and are still in use in current breeding 
programs (Atalan-Helicke 2012, FAO). However, searching for such traits can be a daunting and 
costly process given that PGR consists of large collections and populations maintained in situ or 
on-farm that are also more prone to yield climate change related traits but yet to sampled and 
collected. What is required therefore is an eficient method to select material from these genetic 
resources so that the probability of inding and locating the required variation is maximized while 
reducing the number of accessions evaluated and the onverall cost implications (Gollin et al. 
2000). The FIGS approach represents one such method.

The FIGS approach is based on the paradigm that adaptive traits exhibited by germplasm 
are likely to relect the selection pressures of the environment from which the germplasm was 
originally sampled (Mackay and Street, 2004). For example, if a plant population is exposed over 
a signiicant period of time to weather conditions that are favourable to consistently high pathogen 
populations then it is likely that a selection pressure will be imposed on the plant population for the 
emergence of resistance genes. Paillard et al. (2000) found this to be the case for the evolution 
of powdery mildew resistance in wheat and barley landraces. Thus if a dependency between a 
given trait and environmental parameters can be deined then the relationship can be used to 
predict the likelihood of inding a desired trait in a given environment (Mackay and Street 2004, 
Bari et al. 2012, Endresen et al. 2012 ). In this context information about the environmental origins 
of accessions are used to deine trait speciic subsets of germplasm with a higher probability of 
containing the sought-after traits. 

This paper presents and discusses how FIGS has been applied to the search for resistance to 
stripe (yellow) rust in durum wheat. In previous FIGS studies predictive models were applied 
to historic climate data to search for traits of interest. In this study the models were tested with 
future climate change scenarios. However, adjustments may be required in the models for 
change climate scenarios as well as improvement by working ways in which environmental data 
is presented to the models to improve the search for traits to cope with climate change adaptation. 
The modelling process is considering separating the induced-shift climate change variation from 
the overall variation for better prediction. 
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II – Methodology 

1. Data
This study was based on a ield evaluation of durum wheat accessions for response to a naturally 
occurring yellow rust infection at ICARDA during the 2011/2012 season. The environmental data 
consisted of long-term climate monthly average data for the sites from which the accessions were 
originally sampled. The study also consists of projected climatic data extracted from three future 
climate scenarios based on the Canadian Climate Centre (CCC) global circulation model (Boer 
et al. 2000). 

All the climate variables were extracted from a grid cell of 1 square km (Table 1) as monthly 
data (De Pauw 2008). Monthly data are coarse grained and thus more prone to be out of phase 
in relation to critical stages of crop development (Coops et al. 2001), which would be further 
ampliied by climate change effects. Thus the study also used daily data which were derived from 
the monthly values using models proposed by Epstein (1991) (Hofstra et al. 2008).

To better capture the climate change induced-shifts the predictive models were applied to climatic 
conditions within the growing period. Thus data averages for stages in a crops development 
where compared to long term climatic averages expressed as monthly values alone. Thus in 
the modelling process the noise created by differences in phenology between sites and climate 
change induced-shifts would be eliminated facilitating higher resolutions to detect environment – 
trait linkages.

To estimate the crop development phases a day-degree accumulation model was used from 
an estimated onset date for each site. The onset date was estimated using a method which 
determines when neither moisture nor temperature would limit plant growth. The method is based 
on a modiication of a model developed by the Food and Agriculture Organization of the United 
Nations (FAO 1978, De Pauw 1982).

Table 1. The environment variables used in the study. 

Variable
Type

Variable
Name

Variable
Description

Unit
Number

Climatic

Phenology

Tmin

tmax

prec

tmind

tmaxd

precd

Onset

Monthly minimum temperature 

Monthly maximum temperature

Monthly precipitation

Daily minimum temperature 

Daily maximum temperature

Daily precipitation

Date of sowing 

°C

°C

mm

°C

°C

mm

day

12
12
12
365
365
365
1

All variables were standardized to a mean of zero and a standard deviation of 1. After the 
transformation the data was standardized and a comparison made between the transformed and 
non-transformed data. This data pre-processing was systematically and automatically carried out 
through the different models.

2. Modelling
In previous models the predictions were limited to past climate data while here the modelling 
was also carried out on projected future scenarios. The stripe (yellow) rust disease evaluation 
scores of the growing season 2011/2012 were presented to the models to detect the trait by 
collection site environment dependency, if it exists. The models were then run on all the durum 
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collection data held at ICARDA using current climate set of data as well as 2 other sets of future 
climate data/maps relecting two emission scenarios: a and b scenarios. The b scenario projects 
a doubling of CO2 relative to its preindustrial level (Franklin et al. 2013). 

The modelling procedure was based on running two models using the current climate variables and 
then re-run the models using CC variables. The models used are SVM (Support Vector Machine) 
and RF (Random Forest). RF is a clustering algorithm developed to act like an ensemble classiier 
where the best splitters are randomly selected at each node among subset predictors ((Breiman 
2001; Liaw and Wiener 2002). It is a procedure used in gene selection and classiication of 
microarray data and genome-wide association studies for complex human diseases (Díaz-Uriarte 
and Alvarez de Andrés 2006; Lunetta et al. 2004). Support Vector Machines (SVM), on the other 
hand, maps input data to a more high-dimensional space that would lead to a better separation 
of data into respective classes by isolating those inputs which fall nearby the data boundaries 
(Cortes and Vapnik 1995; Principe et al. 2000). The mapping of input data to high-dimensional 
space is carried out through processes called kernel functions such as radial basis function 
(RBF) which is the kernel function used in this study for the SVM model. SVM models have been 
found to distinguish optimally between groups with minimum loss of information (Guo et al. 2004; 
Karatzoglou et al. 2006).

The predicted probabilities were then used to delimit areas where the conditions are conducive 
to occur. After deining the appropriate variograms, the maps were generated using kriging 
techniques (Cressie 1993). To create maps the R module was applied to irregularly spaced data 
(Figure 2) where the correlation between sites is (assumed) to be an exponential function of the 
distance.

III – Results

The results show the presence of relationship between the current or past climate data and 
the resistance to stripe rust. Both Receiver Operating Characteristics (ROC) values as well 
as Kappa values are all highly above acceptable values of 0.5 and 0.4 respectively. The ROC 
plots illustrate also that the curve for the two models were well above the diagonal line, which 
is expected when the model is different from random. The vertical trend towards the left-hand 
side is also an indication that the models classiied the resistant accessions more correctly 
with fewer false positive errors (Fawcett 2006). The histograms (right side) illustrate further the 
extent of separation between the two trait states, resistant on one hand and tolerant on the 
other, with limited overlapping between the two states. The models were also able to correctly 
classify sites that yield either resistant or susceptible genotypes with a high correct classiication 
when compared to the previous studies (Table 2). The accuracy of prediction as well as kappa 
increase reaching up to 0.83 and 0.70 respectively as we move from monthly data to aligned 
daily data based on onset data (Table 4). 

Table 2. Accuracy and agreement parameters of daily two it functions to generate daily data.

it function Stat AUC OR SE SU CC Kappa
Spline mean 0.80 0.32 0.68 0.92 0.87 0.61

upper CI 0.81 0.35 0.70 0.93 0.87 0.63
lower CI 0.79 0.30 0.65 0.91 0.86 0.59

Loess mean 0.79 0.34 0.66 0.92 0.86 0.59
upper CI 0.80 0.37 0.68 0.92 0.86 0.60
lower CI 0.78 0.32 0.63 0.91 0.85 0.57
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Table 3. Accuracy and agreement parameters of daily data (spline it function) and monthly data.

Data type  AUC OR SE SU CC Kappa
daily data Mean 0.80 0.33 0.67 0.93 0.87 0.62

Upper CI 0.81 0.34 0.69 0.93 0.87 0.63
Lower CI 0.79 0.31 0.66 0.92 0.87 0.61

monthly data Mean 0.79 0.31 0.69 0.90 0.85 0.58
Upper CI 0.80 0.33 0.71 0.90 0.86 0.60

 Lower CI 0.78 0.29 0.67 0.89 0.84 0.56

Table 4. Accuracy and agreement parameters of aligned data. 

Data type  AUC OR SE SU CC Kappa
monthly Max 0.81 0.28 0.72 0.90 0.86 0.61
daily data Max 0.82 0.30 0.70 0.93 0.88 0.64
aligned daily data Max 0.83 0.28 0.72 0.95 0.90 0.70 210 days

The presence of the existence of the dependency between climate data and the trait of resistance 
to stripe rust was used as a priori information for the prediction of stripe resistance in independent 
data. The results are shown in the maps for different CC scenarios. In terms of areas that might 
yield stem rust variation, Ethiopia was highest followed by India and Turkey. This is also similar to 
the results that have been reported on the regions that might yield resistance (Singh et al. 2006).

IV – Discussion

Recent indings on a study conducted to search for climate change traits such as traits of tolerance 
of drought where a comparison was made between a priori and a posteriori information supports 
the assertion that FIGS can be used as an effective tool to search for traits of adaptation to 
climate change (Khazaei et al. 2013). Similar comparison was also made recently for stripe rust 
resistance in durum wheat conirming also that FIGS is tool with potential to not only ind the 
sought after traits but on a limited number of accessions (Bari et al. in press). 

Figure 1. ROC plots for the RF and SVM models applied to the training set of accessions evaluated 
for Yr disease in 2011/2012 growing season at ICARDA (Left hand side). The ROC curve to the left of 
the diagonal plot is the true positive rate versus false positive rate. Density plots for prediction of 
resistance and susceptibility for the RF and SVM models (Right hand side).
[Green line indicates the probability density distribution for resistance and red line indicates 
susceptibility]
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