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Abstract.  Wheat is one of the most important cereal crops grown worldwide and provides most of the proteins 
in human diet. Grain protein content (GPC) determines the nutritional value and the baking properties of 
common wheat (Triticum aestivum L. ssp. aestivum) as well as the pasta-making technology characteristics 
of durum wheat (Triticum turgidum L. ssp. durum). GPC is a typical quantitative trait controlled by a complex 
genetic system and inluenced by environmental factors and management practices, as well as nitrogen 
and water availability, temperature and light intensity. In higher plants inorganic nitrogen, in the form of 
ammonia, is assimilated via the glutamate synthase cycle or GS-GOGAT pathway. This assimilation requires 
cofactors, reducing equivalents and carbon skeletons generated during photosynthesis. We focused on the 
Glutamine synthetase and Glutamate synthase, as potential candidates for determining grain protein content. 
While Glutamine synthetase genes are a family whose enzymes are located in both cytoplasm and plastids, 
glutamate synthase exists in two different isoform depending on the electron donor used as cofactor, NADH- 
dependent and Fd- dependent GOGAT, both active in plastids. In the present manuscript has been reported 
an overview on the candidate gene involved found in the control of grain protein content.

Keywords.  Wheat – Glutamine synthetase (GS) – Glutamate synthase (GOGAT) – Sequencing – Real Time 
PCR.

Caractérisation moléculaire des gènes candidats impliqués dans le métabolisme de l’azote et relation 
avec la teneur en protéines du grain de blé 

Résumé. Le blé est l’une des cultures céréalières les plus importantes dans le monde entier et il fournit 
la plupart des protéines de l’alimentation humaine. La teneur en protéines des grains (GPC) détermine 
la valeur nutritionnelle et les propriétés de cuisson du blé commun (Triticum aestivum L. ssp. aestivum) 
ainsi que les caractéristiques de la production de pâtes du blé dur (Triticum turgidum L. ssp. durum). La 
GPC est un caractère quantitatif typique contrôlé par un système génétique complexe et inluencé par 
des facteurs environnementaux et les pratiques de gestion, ainsi que par la disponibilité de l’azote et de 
l’eau, la température et l’intensité lumineuse. Chez les plantes supérieures, l’azote inorganique, sous forme 
d’ammoniac, est assimilé par l’intermédiaire du cycle de la glutamate synthase ou la voie GS-GOGAT. Cette 
assimilation nécessite des cofacteurs, des équivalents réducteurs et des squelettes de carbone, générés lors 
de la photosynthèse. Nous nous sommes concentrés sur la glutamine synthétase et la glutamate synthase, 
comme des candidats potentiels pour déterminer la teneur en protéines du grain. Alors que les gènes de 
la glutamine synthétase sont une famille dont les enzymes sont situés à la fois dans le cytoplasme et les 
plastes, la glutamate synthase existe en deux isoformes différents selon le donneur d’électrons utilisé comme 
cofacteur, NADH dépendant et GOGAT Fd- dépendant, tous les deux actifs dans les plastes. Dans le présent 
travail, nous allons présenter une vue d’ensemble des gènes candidats impliqués dans le contrôle de la 
teneur en protéines du grain. 

Mots-clés. Blé – Glutamine synthétase (GS) – Glutamate synthase (GOGAT) – Séquençage – PCR en temps réel.
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I – Introduction

The nutritional quality of cereals is an important component of the population diet as the cereals 
represent the largest component of world food supplies. In the years ahead wheat, perhaps more 
than other cereals, can be expected to assume greater importance as a source of protein for much 
of the world’s increasing population. In durum wheat, seed storage proteins are important not only 
from the nutritional standpoint, but they have even greater signiicance for pasta-making quality. 
Grain protein concentration, protein quality, are same of the major quality attributes affecting 
pasta-making technology characteristics and resistance to overcooking (Autran et al., 1996). The 
accumulation of protein in kernels is related to the nitrogen availability. Nitrogen uptake is an 
essential element in crop improvement, either directly for grain protein content or indirectly for 
photosynthetic production. Thus, nitrogen utilization is fundamental to crop productivity, and over 
the past 50 years nitrogen (N) fertilizers have been extensively used to increase both grain yield 
(GY) and grain protein content (GPC) in cereals and wheat - helping to support a vastly increased 
world population. However, this requires that growers must optimize the use of N fertilizers to 
avoid pollution, while maintaining reasonable proit margins. Such crops would make better use of 
nitrogen fertilizer supplies giving higher yields with improved protein contents. Therefore, selecting 
new crop varieties exhibiting improved nitrogen use eficiency (NUE; the yield of grain per unit of 
available N in the soil), and adapting agricultural practices to reduce the use of N fertilizers both 
represent challenges for both breeders and farmers (Hirel, 2007). 

Whether N is derived from soil reserves, from N fertilizer, or from N2 ixation, it is incorporated 
into the organic form via the assimilation of ammonia. However, the primary assimilation of 
ammonia from external inorganic N is only part of the process. N is also released from organic 
combination as ammonia and re-assimilated many times during the movement of N around the 
plant, from seed reserve, through transport to vegetative organs, to eventual re-deposition in a 
new crop of seeds. There is also a major release and re-assimilation of N during the process of 
photorespiration in C3 plants. The process of ammonia assimilation is thus of crucial importance 
to crop growth and productivity.

II – Detection of QTL for grain protein content 

GPC is a typical quantitative trait controlled by a complex genetic system and inluenced by 
environmental factors and management practices (nitrogen and water availability, temperature 
and light intensity). Heritability estimates for GPC ranged from 0.41 (Kramer 1979) to 0.70 
(Suprayogi et al., 2009), depending upon the genetic material, environment and the method of 
computation. The extensive review by Konzak (1977) and more recent investigations by (Levy 
and Feldman 1989; Stein et al., 1992; Snape et al., 1995; Sourdille et al., 1996; Joppa et al., 
1997; Prasad et al., 1999; Khan et al., 2000; Perretant et al., 2000; Dholakia et al., 2001; Zanetti 
et al., 2001; Campbell et al., 2001; Börner et al., 2002; Blanco et al. 2002, 2006; Olmos et al. 
2003; Groos et al., 2003; Prasad et al., 2003; Gonzales-Hernandez et al., 2004; Turner et al., 
2004; Huang et al., 2006; Nelson et al., 2006; Zhang et al., 2008; Mann et al., 2009; Raman 
et al., 2009; Suprayogi et al., 2009; Sun et al., 2010) have indicated that factors inluencing 
protein concentration in cultivated and wild wheats are located on all chromosomes. The lack of 
suficient genetic variation for useful traits within the cultivated wheats has limited the ability of 
plant breeders to improve grain yield and grain quality.

Recently Blanco et al. (2012) in their study evaluated grain yield components and GPC in ive 
ield trials with twelve replicates and in a RIL population derived by the cross of two durum wheat 
cultivars Ciccio x Svevo. Ten independent genomic regions involved in the expression of GPC 
were identiied, six of which were associated with QTLs for one or more grain yield components. 
QTL alleles with increased GPC effects were associated with QTL alleles with decreased effects 
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on one or more yield component traits. Four QTLs for GPC showing always signiicant effects 
should represent genes that inluence GPC independently from variation in the yield components. 
We compared the genomic regions involved in the quantitative expression of GPC found in the 
Svevo x Ciccio RIL population with the map position of QTLs found in different genetic materials. 
A major QTL on chromosome 2A was further investigated. The inluence of group-2 chromosomes 
on GPC control was irstly reported by Joppa and Cantrell (1990) using durum wheat - var. 
dicoccoides chromosome substitution lines then conirmed by Blanco et al. (2006) in the durum 
backcross line 3BIL-85 (Latino x dicoccoides) and by Suprayogi et al. (2009) in the Canadian 
durum line DT695. 

III – Candidate genes approach 

The candidate gene approach has been applied in plant genetics in the past decade for the 
characterization and cloning of Mendelian and quantitative trait loci (QTLs) as a complementary 
strategy to map-based cloning and insertional mutagenesis. Candidate genes analysis is based 
on the hypothesis that known-function genes (the candidate genes, CGs) could correspond to loci 
controlling traits of interest (Gebhardt et al., 2007). CGs refer either to cloned genes presumed 
to affect a given trait (‘functional CGs’) or to genes suggested by their close proximity on linkage 
maps to loci controlling the trait (‘positional CGs’). In plant genetics the most common way to 
identify a CG is to look for map co-segregation between CGs and loci affecting the trait. Statistical 
association analyses between molecular polymorphisms of the CG and variation in the trait of 
interest can let to afirm the involvement of the CG in a speciic metabolic pathway. To select the 
most promising candidates from a large number of functional candidate genes, gene sequences 
should be tested for linkage to QTL for the trait of interest by molecular mapping, thereby identifying 
positional candidates (genes co-localizing with a QTL) (Pajerowska et al., 2005).

In the present work this approach has been applied to the study of grain protein content in 
durum wheat. Several studies have attested the key-role of the glutamine synthetase enzyme 
(GS) in plant nitrogen metabolism (Bernard et al., 2009) and GOGAT (glutamine-2-oxoglutarate 
amidotransferase). Glutamine synthetase gene encodes for an enzyme responsible of the irst step 
of ammonium assimilation and transformation into glutamine and glutamate, essential compounds 
in aminoacid-biosynthetic pathway. GS exists in multiple enzyme forms with the chloroplastic 
isozyme encoded by one gene (GS2) and the cytosolic encoded by 3–5 genes depending on the 
species. Studies have shown that both GS isozymes are regulated in a developmental manner 
in leaves and have different metabolic roles (Tobin et al. 1985; Kamachi et al., 1991; Finnemann 
and Schjoerring 2000; Habash et al., 2001). Cytosolic GS has multiple metabolic functions, 
such as assimilating ammonia into glutamine for transport and distribution throughout the plant; 
immunolocalisation studies in tobacco (Brugie‘re et al., 1999), pine (Canovas et al., 2007), potato 
(Pereira et al., 1995) and rice (Sakurai et al., 1996; Tabuchi et al., 2005) have shown predominant 
vascular location in different organs. Whilst studies on GS regulation in several species have 
shown some common regulatory mechanisms, also highlighted differences particularly in gene 
expression, protein and enzyme activity levels (McNally et al., 1983). Few studies are available 
about genomic variation of these genes, therefore, it is important to study the role of each GS 
gene in a variety of plant species. 

On the bases of phylogenetic studies and mapping data in wheat, ten GS cDNA sequences were 
classiied into four sub-families denominate GS1 (a, b, and c), GS2 (a, b, and c), GSr (1 and 2) 
and GSe (1 and 2) (Bernard et al., 2008). Bernard et al. (2008) reported that QTLs for lag leaf 
total GS activity were positively co-localised with others for grain and stem nitrogen, but smaller 
correlations were established with loci for grain yield components; they identiied QTLs for GS 
activity co-localised to a GS2 gene mapped on chromosome 2A and to the GSr gene on 4A. 
Genetic studies in rice (Yamaya et al., 2002; Obara et al., 2004) and maize (Hirel et al., 2001, 
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2007; Galais and Hirel, 2004) demonstrated co-localisations of QTLs for GS protein or activity 
with QTLs relating to grain parameters at the mapped GS genes. Bernard et al. (2008) auspicated 
to integrate the biochemical and genetic approaches to further establish allelic differences in GS 
isozymes and to uncover new regulatory loci modulating GS activity in diverse genetic material or 
mapping populations. The GOGAT enzyme catalyzes the reductive transfer of the amide group of 
glutamine to 2-oxoglutarate to form two glutamate molecules (Krapp et al., 2005). Together with 
GS, it maintains the low of N from NH4

+ into glutamine and glutamate, which are then used for 
several other aminotransferase reactions during the synthesis of amino acids (Ireland and Lea, 
1999). Kinetic and inhibitory studies have suggested that GOGAT is the rate-limiting step in amino 
acid production (Chen and Cullimore, 1989; Baron et al., 1994). In rice, two different GOGAT 
enzymes have been identiied based on the electron donor: a ferredoxin (Fd)-dependent GOGAT 
and a NADH-dependent GOGAT. In rice, NADH-GOGAT is active in developing organs, such 
as unexpanded non-green leaves and developing grains (Yamaya et al., 2002). NADH-GOGAT 
has been proposed to be involved in the use of remobilized nitrogen, because it is located in the 
speciic cell types which are important for solute transport from the phloem and xylem elements 
(Hayakawa et al., 1994).

In the present work we focused the attention on GS genes and GOGAT with the objectives to 
isolate and characterize the complete genomic sequences of these genes in the A and B genomes 
of two elite durum wheat cultivars differing for grain protein content and to assess the association 
with QTLs for grain protein content. 

IV – GS-GOGAT candidate genes 

The isolation of the complete glutamine synthetase gene sequences and the localization 
on the two homeologous chromosome 2A and 2B in the durum wheat cvs. Ciccio and Svevo 
characterized by different grain protein content has been reported by Gadaleta et al. (2011). 
GS2-A2 located on 2A chromosome was found comprised of 13 exons separated by 12 introns 
The GS2-B2 has the same intron/exon structure, but the two cultivars differ for the insertion of a 
33 bp sequence located in the second intron of the cv. Svevo. The complete cytosolic glutamine 
synthetase gene sequences of the durum wheat cvs “Ciccio” and “Svevo” was also reported by 
Gadaleta et al. (2014). GSe-A4 was found located on 4A chromosome and was comprised of 12 
exons separated by 11 introns, while the GSe-B4 gene on 4B chromosome was comprised of 11 
exons separated by 10 introns (Gadaleta et al., 2014). 

Speciic primer were designed in the polymorphic regions and in order to genetically map the 
genes in a RIL population, obtained by crossing the two durum wheat cultivars Svevo and Ciccio. 
Mapping data localized GS2 and GSe genes on chromosomes 2A, 2B, (GS2) and 4A, 4B (GSe) 
where four signiicant QTLs for GPC where found by Blanco et al. (2012). 

The high sequence homology was found for plant cytosolic and plastidic GS as also reported by 
Bernard et al. (2008) suggesting that they are derived from a common ancestor, and providing 
molecular evidence supporting the mechanism of chloroplast evolution (Weeden, 1981). This 
model proposed that genes for plastid isozymes evolved by duplication of nuclear genes and 
subsequent specialization of each locus. 

The genomic sequences of the two homoeologous A, and B NADH-GOGAT genes were obtained 
in the same durum wheat cultivars by Nigro et al. (2013). Analysis of the gene sequences indicates 
that all wheat NADH-GOGAT genes are composed of 22 exons and 21. The two hexaploid wheat 
homoeologous genes show the same exon/intron number and size except intron 13 which shows 
differences in both length and sequence for all of three homoeologues. A comparative analysis of 
sequences has been conducted among di- and mono-cotyledous plants and shows both regions 
of high conservation and of divergence. 
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qRT-PCR performed with the two durum wheat cvs Svevo and Ciccio (characterized by an high 
and low protein content, respectively) was conducted for the three genes (GS2, GSe and GOGAT). 

Total RNA extracted from plants grown in ield conditions and reverse-transcribed for qRT-PCR 
analyses. To test if the homoeologous genes show differential expression patterns, qRT-PCR 
were performed using speciic primers designed to preferentially amplify the A and B sequences 
for the six genes in leaves (at seedling stage) at three different phenotypic stages (irst leaf, 
lowering and grain illing).

Different expression levels of the two NADH-GOGAT-3A and NADH-GOGAT-3B genes was 
observed, transcript levels in the irst leaf and grain illing stages showed similar expression 
levels, while a signiicantly higher value of transcripts was observed during lowering (P<0.01) 
(Nigro et al., 2013). A similar trend was observed for both the homoeologous genes and in the 
two cultivars (Fig.1).

The physical chromosome position of the NADH-GOGAT-3B gene co-localize with Meta QTLs 
for high protein content reported by Quraishi et al. (2011). They showed, a NUE QTL conserved 
at the same orthologous loci as the GOGAT gene on wheat chromosome 3B, rice chromosome 
1, sorghum chromosome 3 and maize chromosomes 3 and 8, despite 50–70 million years of 
separate evolution associated with considerable sequence shufling. For these reasons NADH-
GOGAT is one of the potential candidate genes involved in the control of the complex character 
trait GPC. 

The transcription level of the GSe and GS2 was also investigated. A signiicant different expression 
was observed for both genes between the two cvs. Higher values of expression were observed 
for GSe-A4 during the lowering time, while the higher value of GSe-B4 expression was observed 
during the maturation, indicating that the homoeologous alleles play non overlapping roles in the 
different phenological phases and that alleles encoded by “Svevo” are more expressed than the 
“Ciccio” ones, probably due to differences in the promoter region or to a different gene regulation 
between the two cvs Ciccio and Svevo (data reported in Gadaleta et al., 2014).

Figure 1. Comparison of the expression level of NADH-GOGAT-3A and NADH-GOGAT-3B genes in 
three different phenological phases (irst leaf, lowering, grain illing) of cv Ciccio and Svevo.

A different trend was observed for GS2-B2 whose transcript level increased during the three 
different phenological phases with a major value during maturation. ANOVA showed highly 
signiicant differences (P<0.001) between the two cultivars also for GS2-B2 gene during lowering 
and maturation (Fig.2). In conclusion we can say that in the present work candidate gene approach 
was eficiently applied for the study of grain protein content ion wheat.
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Figure 2. qRT-PCR conducted for GS2-B2 gene with speciic probes in three different phenological 
phases (irst leaf, lowering, grain illing) of cv Ciccio and Svevo.
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