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Abstract: Agenda 2000, the reform of the CAP (Common Agricultural Policy) in progress, implies 
significant mutations in the technical and economical environment of French farms. Therefore, an 
important question for the civil authorities is: "What would be the impact of such changes on culti-
vated surfaces?" To this end, a micro-economic model, whose purpose was to study the regional ag-
ricultural supply, was built by Sourie et al. [12] at INRA-ESR (National Institute of Agricultural Re-
search, Rural Economy and Sociology, Grignon, France). This model, named MAORIE - the acronym 
in French for "Regional Agricultural Supply Model INRA Economy" - is a Linear Programming (LP) 
model intended to represent the farmers' behavior as to their surface allocations to various cultures. 
The aim of the present study is to improve the representativity of MAORIE by taking into account 
uncertainty about crop prices and yields. To model this uncertainty, intervals on gross margins per 
surface unit were introduced in the objective function level of the model. The resulting model is an 
"Interval Linear Programming (ILP)" model. Many resolution procedures have been proposed for ILP 
models in the literature. In this work, the minmax regret approach will be investigated to determine 
whether it can lead to the desired representativity.  

Keywords: Interval Programming, Multiobjective Linear Programming, MinMax Regret, Uncertainty, 
Behavior Estimation, Agricultural Policies. 

 

1. Introduction 

The political and economical orientations of the European Union for the years 2000-2006 were 

determined on March 1999 by the Berlin Agreements. The new "Common Agricultural Policy 

(CAP)" adopted for the European Union countries imposes significant changes in the technical 

and economical environment of European farmers. The main objective is to level European 

prices with the world market prices and, therefore, increase the competitiveness of the Union in 

agricultural markets. For French farms, these mutations imply an important reduction in prices 

and in the amount of subsidies allocated for oilseeds, cereals and protein seeds.  

A natural concern of the French Government is, therefore, the evolution of the surfaces allo-

cated to these crops and the income of the farmers. To analyze the possible evolutions, the Rural 

Economy and Sociology team of the French National Institute of Agricultural Research (INRA-

ESR) built MAORIE, a Linear Programming (LP) model [12]. This model aggregates elementary 

LP models in which each model represents a farm. The purpose of the model is to anticipate 

farmers' behavior concerning the surfaces allocated for various crops. There are two distinct 

stages in the exploitation of the model. The first stage is a preparation phase where the pa-

rameters of the model are adjusted to the set of farms under consideration until the model be-

comes able to reproduce "the observed surface allocations" (referred to also as observed solution 

or observed behavior in the text) for current prices and yields. The second stage is a simulation 

phase where the future situation is explored for different scenarios on future prices (see  

Figure 1).  
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The model was implemented by the INRA-ESR team for thirty elementary models correspond-

ing to thirty farms of the Poitou-Charentes1 Region in France. The results of the first stage 

showed that the model could not satisfactorily reproduce the observed behavior of the farmers. 

This was possibly due to the combined effects of the uncertainty about crop prices and yields, 

two major components of the unit profits which are supposed to guide the choices of farmers. 

The aim of the present work is to investigate if the representativity of MAORIE concerning 

farmers' behavior can be improved by taking into account price and yield variations. To model 

this uncertainty, intervals on gross margins per surface unit were introduced into the objective 

function of the model. In particular, by means of experiments, an attempt was made to see if it 

is reasonable to represent farmers' behaviors using the minmax regret approach.  

 

 

Figure 1. Preparation and Exploitation 
of MAORIE. 
 

 

The paper is organized as follows: The necessary information on the mathematical structure of 

the MAORIE model is given in the next section (more detailed presentations and discussions 

about the structure of MAORIE can be found in Sourie et al. [12] and Kazakci [5]). Formal as-

pects of the "Interval Linear Programming (ILP)" approach are summarized in section 3. The 

use of the minmax regret criterion within the ILP framework is then presented in section 4. The 

implementation procedure and the results thereof are the focus points of section 5. Finally, the 

conclusions drawn are given in section 6.  

2. Modelling the Farmers' Behavior: The MAORIE Model 

Structure MAORIE is a linear programming model, which is itself an aggregate of several ele-

mentary independent linear programming models. This aggregation (in this context, the 

summation of elementary models) is possible because there is no common constraint be-

tween elementary models2 each corresponding to one of the farms of the department or the 

region under consideration. 

                                                
1 This region is particularly vulnerable to the changes to come since it ranks fourth in cereal production, first in sunflower 
production (% 25 of the total French production), and third in corn grain production in France. 
2 Remark, however, that we shall use the elementary models forming MAORIE and not their aggregation since the 
computational complexity of the adopted methods increases exponentially with the number of decision variables with interval 
coefficients. 
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Variables The variables of each elementary model represent surfaces (ha) to be allocated to the 

production of various crops by the corresponding farm. Thus, they are real and positive. 

For each farm, the number of variables varies between 8 and 10. The total number of crops 

considered in MAORIE is 13. 

Objective Function The model determines the surface allocation for each elementary model by 

maximizing the total gross margin of that farm (while respecting certain constraints on the 

allocations and variations of surfaces). Hence, the objective function for the fth elementary 

model is: 

 ( )∑∈
⋅−+⋅=

Ii fifiifii

f xchsypz ,,,  

 where i ∈ I is the index for crops, pi is the price for the ith crop, yi,f is the yield for the ith crop 

on the fth farm, si is the subsidy for the ith crop, chi,f is the production cost for the ith crop on 

the fth farm, and finally, xi,f is the surface allocated for the ith crop by the fth farm. The "opti-

mal" solution of MAORIE is simply the aggregate of the optimal solutions of each elemen-

tary model: the total surface allocated to a crop at the macroscopic level (when all the ex-

ploitations are considered) is equal to the sum of the surfaces allocated to this same crop in 

the optimal solutions of each elementary model. 

Constraints There exist several types of constraints in MAORIE: Land resource constraints, set 

aside constraints, quotas on demand, irrigation constraints, etc. They can be categorized 

into the two following groups.  

 Explicit Agronomic Constraints. These constraints are explicit in the sense that it is easy to 

interpret their meaning. Land resource constraints for each farm limit the total arable land 

to its observed value, set aside constraints translate the administrative obligations imposed 

by the revised Common Agricultural Policy of the E.U. for the set aside land, irrigation 

constraints give the observed upper bounds for the irrigable surface. Their parameters are 

easily determined by historical data and observation. 

 Implicit Agronomic Constraints. These constraints (also referred to as flexibility constraints) 

give upper bounds on surfaces for crops or groups of crops. They are implicit in the sense 

that they represent implicitly other constraints (such as availability of labor, technical and 

technological means,financial resources, etc.) that are not directly represented in the model 

due to modelling difficulties. For each farm, these upper bounds are a fraction of the total 

available land for that farm. These fractions are determined for crops and groups of crops 

and not for the farms. Hence, the same fraction applies to all of the farms considered once 

determined. The initial values for these fractions are determined by observing the historical 

data (see Kazakci [5] for details). Then, a trial-error process, called the calibration proce-

dure, is undertaken: the model is solved, the returned solution is compared to the observed 

solution to see the distance. If the distance is important, a new set of parameters for the 

flexibility constraints is determined, and the process continues until a satisfactory solution 

is obtained. 

 For the purpose of this paper, the fth elementary model of MAORIE can be represented by 

the following LP model. 

 max{zf = cfxf : xf ∈ Sf} 

 where cf is the vector of unit gross margins for the fth farm, xf is the decision vector and Sf 

represents the feasible decisions for the fth farm. 

Results of the Calibration Procedure for Poitou-Charentes Figure 2 presents the aggregated 

observed solution for the considered region and the MAORIE results (i.e., the sum of opti-
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mal allocations by farm for each crop) at the end of the calibration procedure. The surfaces 

are expressed in hectares. As one can see, there exists some considerable gaps between the 

observed and the optimized allocations for various crops: rape-seed, irrigated and non-ir-

rigated corn, sunflower, barley(food) and wheat. The difference in absolute value between 

the observed production levels and the optimized allocations (in other words, the distance 

between the two solutions using a L1 metric) is 1624 ha. The total arable land for the region 

being 4282 ha, the relative distance (the difference between the two solutions in absolute 

value divided by the total arable land) is 38%. In fact, at the microscopic level (i.e. when the 

results of elementary models are considered one by one), the distances become more im-

portant: for 26 farms out of 30, the relative distance is more than 40%, for 20 farms out of 

30, the distance is even higher (50%). At the microscopic level, these results could be ex-

pected, since by summing the allocation levels we introduce compensatory effects (see Ka-

zakci [5] for a detailed analysis). 

 

 

Figure 2.  
Comparison of the 
Observed and the 
Optimized (MAORIE) 
Solutions at the 
Macroscopic Level. 
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 Hence, the need for improvement in the representativity of the model is clear. In all evi-

dence, such distances can occur for two reasons: an inaccurate specification of the feasible 

regions of the models (which would be closely related to the calibration procedure) or an 

inaccurate specification of the objective functions. Considering the recent changes in the 

economical environment and the natural uncertainty of the yields, we opted for investi-

gating the problems that may arise because of a possibly inaccurate specification of the ob-
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jective functions3. More precisely, we modified the original MAORIE model to take into ac-

count uncertainty about prices and yields by using interval valued coefficients for the 

objective function. The presentation of the formal interval linear programming problem is 

given in the next section. 

3. Interval Linear Programming 

In order to decide about their surface allocations, the farmers have to estimate future crop prices 

and yields. In a relatively stable environment, it is reasonable to suppose that farmers will base 

their decisions on average prices and yields. MAORIE is originally designed under this very as-

sumption: objective function coefficients (the gross margins per crop) are calculated based on 

the 1993-1997 price and yield averages. 

In the present context, however, the unpredictability of the unit gains increases: the natural un-

certainty about yields is combined with an exceptional uncertainty about prices. Therefore, the 

farmers would be less willing to use average prices and yields to make their decisions. Instead, 

a natural tendency for them would be to base their reasoning on the ranges of variation in 

prices and yields. For this reason, the objective function coefficients, which correspond to unit 

gross margins per crop, will be represented by intervals in the modelling. In the following 

paragraph, a brief review of the literature devoted to the subject and a formal definition of the 

Interval Linear Programming (ILP) problem will be given. Finally, two kinds of approaches 

concerning possible solution procedures will be outlined. 

3.1 Related Work on ILP Models 

In mathematical programming models, the coefficient values are often considered known and 

fixed in a deterministic way. However, in practical situations, these values are frequently un-

known or difficult to determine precisely.  

Interval Programming (IP) has been proposed as a means of avoiding the resulting modelling 

difficulties, by proceeding only with simple information on the variation range of the coeffi-

cients. More precisely, it consists of using parameters whose values can vary within some inter-

val, instead of parameters with fixed values, as is the case in conventional mathematical pro-

gramming. Many techniques have been proposed to solve the resulting problem. To our 

knowledge, the proposed techniques consider only linear mathematical programming models. 

Shaocheng [10] studied the case where all the model parameters are represented by intervals 

and the decision variables are non negative. Recently, Chinneck and Ramadan [2] generalized 

their approach to the case where variables are without sign restriction. The case which is of 

greater interest for our purpose is the one where only the objective function coefficients are rep-

resented by intervals. This particular problem is the most frequently considered in ILP literature 

(see, e.g., [1], [3], [4], [6], [8], [7], [9], [13]). We now introduce some definitions and notations and 

briefly present the formal problem. 

3.2 Interval Linear Programming (ILP) Problem 

Let us consider a Linear Programming (LP) model with n (real and positive) variables and m 

constraints. The objective function is to be maximized. Formally: 

                                                
3 Therefore, an implicit hypothesis is that the feasible region of each elementary model represents adequately the allocation 
possibilities of the farmers. Let us note that the observed solutions for each farm have been verified to be feasible in the 
corresponding model. 
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 max {cx : c ∈ ̆, x ∈ S}  (ILP) 

where 

 [ ]{ }niulcc iii

n ..1,,: =∀∈ℜ∈=Γ  

 { }mnmn bAxbAxxS ℜ∈ℜ∈≥≤ℜ∈= × ,,0,:  

The uppercase letters with bold characters denote matrices (e.g., A). The lowercase letters with 

bold characters denote vectors (e.g., c ). The null vector is denoted by 0. [l
nn x ℜ∈ℜ∈ , i, ui] 

represents a closed interval of real numbers where li stands for the lower bound and ui stands 

for the upper bound. The letters with indices indicate  

the elements of a matrix (e.g., ( ) nm

nmijaA ×ℜ∈=
,

n

) or a vector (e.g., 

) or an interval (e.g., ni cccc ℜ∈= ),...,,...,( 1 [ ]ii ul ,il ∈ ). 

Let {{ }}Γ∈∈=∈=Π cSycyxSx ,:maxarg:  be the set of potentially optimal solutions. Let 

̗ be the set of all the extreme objective functions: [ ]{ }niulcc iii ..1,,:Y =∀∈Γ∈= .To give 

insight into what the problem becomes when intervals are introduced, we recall the following 

theorem [13], [3]: 

Theorem 1  

Let us consider the following multiobjective linear programming problem: 

 Ι−max{cx : x ∈ S; c ∈ ̗}  (MOLP) 

 where the Ι-max notation stands for the vector maximization. Then, a solution is a potentially opti-

mal solution to (ILP) problem if, and only if, it is weakly efficient to the (MOLP) problem. 

Hence, (ILP) is a particular multiobjective linear programming problem where the 2n objectives 

are elements of ̗ and the set of potentially optimal solutions Π is the set of weakly efficient so-

lutions to (MOLP). Theoretically, this knowledge enables us to mobilize all the tools and con-

cepts of multiobjective linear programming literature, especially to choose/propose suitable so-

lution concepts for (ILP) problem. In the literature, two distinct attitudes can be observed. The 

first attitude consists of finding all potentially optimal solutions that the model can return in 

order to examine the possible evolutions of the system that the model is representing. The 

methods proposed by Steuer [13] and Bitran [1] follow this kind of logic. The second attitude 

consists of adopting a specific criterion (such as the Hurwicz's criterion, the maxmin gain of 

Falk, the minmax regret of Savage, etc.) to select a solution among the potentially optimal solu-

tions. Rommelfanger et al. [9], Ishibuchi and Tanaka [4], Inuiguchi and Sakawa [3] and Mausser 

and Laguna [6], [7], [8] proposed different methods with this second perspective. Following this 

perspective, the next section introduces the approach that we have selected, namely the mini-

mization of the maximum regret approach, and the procedure we adopted for its implementa-

tion. 

4. Minimizing the Maximum Regret 

Minimizing the maximum regret consists of finding a solution which will give the decision 

maker a satisfaction level as close as possible to the optimal situation (which can only be known 

as a posteriori), whatever situation occurs in the future. The farmers of the Poitou-Charentes re-

gion are faced with a highly unstable economic situation and know that their decisions will be 
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based on uncertain gains. It seems reasonable to suppose that they will decide on their surface 

allocations prudently in order to go through this time of economic unstability with minimum 

loss, while trying to obtain a satisfying profit level. This is precisely the logic underlying the 

minmax regret criterion; i.e. selection of a robust solution that will give a high satisfaction level 

whatever happens in the future and that will not cause regret. Therefore, we make the hypothe-

sis that the farmers of the considered region adopt the min-max regret criterion to make their 

surface allocation decisions. The mathematical translation of this hypothesis for the MAORIE 

was to implement the minmax regret solution procedure proposed in the literature (see e.g., [3], 

[6], [7], [8]). The presentation of the formal problem and the algorithm of minmax regret are 

presented in the next paragraphs. 

4.1 MinMax Regret (MMR) Problem 

Suppose that a solution x∈S is selected for a given c∈Γ. The regret is then: 

( ) { } cxcyxcR Sy −= ∈max,  

The maximum regret is: 

( ){ }xcRc ,max Γ∈  

The minmax regret solution  is then such that x� ( ) ( )xRxR maxmax
� ≤ for all x∈S.  

The corresponding problem to be solved is: 

{ }{ }{ }cxcySycSx −∈Γ∈∈ maxmaxmin  (MMR) 

4.2 The MinMax Regret Algorithm 

The main difficulty in solving (MMR) lies in to the infinity of objective functions to be consid-

ered. Shimizu and Aiyoshi [11] proposed a relaxation procedure to handle this problem. Instead 

of considering all possible objective functions, they consider only a limited number among them 

and solve a relaxed problem (hereafter called (MMR�)) to obtain a candidate regret solution. A 

second problem (called hereafter (CMR)) is then solved to test the global optimality of the gen-

erated solution. If the solution is globally optimal, the algorithm terminates. Otherwise, (CMR) 

generates a constraint which is then integrated into the constraint system of (MMR�) to solve it 

again for a new candidate solution. This process continues in this manner until a globally opti-

mal solution is obtained. The relaxed (MMR�) problem is: 

{ }{ }{ }cxcySycSx −∈Γ∈∈ maxmaxmin  (MMR�) 

where { } Γ⊂= pccc ,...,, 21C . This problem is equivalent to: 

min r  (MMR�) 

s.t. r , k = 1,� , p kc

kk xcxc ≥+

rǃ0,  x∈S,  ck∈C 

where  is the optimal solution ofkc
x ( )yck

CcSy k∈∈ ,
max . A constraint of type r is 

called a regret cut. Let us denote 

kc

kk xcxc ≥+

x  the optimal solution of (MMR�) and r  the corresponding 

regret. Since all possible objective functions are not considered in (MMR�) we cannot be sure 

that there is no c belonging to ̆ \ C which can cause a greater regret by its realization in the 

future. Hence, we use the following (CMR) problem to test the global optimality of x : 
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{ }{ }xccySyc −∈Γ∈ maxmax   (CMR) 

Observe that the objective function value of (CMR) represents the maximum regret for x  over 

Γ, denoted by ( )xRmax . If the optimal solution  of (CMR) gives Γ∈∈ +
+

1,1
p

c
cSx p ( ) rxR >max , it 

means that  can cause a greater regret than 
1+pc r  by its realization in the future and that it has 

to be considered also in C while solving (MMR�). So, the regret cut r  is added 

to the previous constraint set of the (MMR�) to solve it again and obtain a new candidate. The 

process is iterated until the generated candidate regret solution is found to be optimal by 

(CMR). This solution procedure idea is summarized with the following algorithm: 

1
11

+
++ ≥+ pc

pp xcxc

MinMax Regret Algorithm 

Step 0:  ,0,0 ←←° kr  choose an initial candidate  x  

Step 1:  ,1+← kk Solve (CMR) to find c  and 
k ( )xRmax  : 

 If ( ) °= rxmaxR then END.  x  minimize the maximum regret. 

Step 2:  Add the regret cut r  to the constraint set of (MMR') kc

kk xcxc ≥+

Step 3:  Solve (MMR') to obtain a new candidate x   and r .  rr ←° . Go to Step 1. 

The difficulty in this resolution process lies in the quadratic nature of the (CMR) problem. 

Inuiguchi and Sakawa [3] investigated the properties of the minmax regret solution to find a 

more suitable way to solve (CRM). Mausser and Laguna [6] used their results to formulate a 

mixed integer linear program equivalent to (CMR) which is less costly to solve. In our experi-

ments we used this equivalent problem formulation. 

5. Implementation of the MMR Approach 

We implemented the interval linear programming approach with the minmax regret criterion to 

the MAORIE model to investigate if its representativity can be improved by this approach. The 

thirty elementary models corresponding to the farms of Poitou-Charentes region were consid-

ered. Each model had between 8-10 variables. The total number of crops considered was 13. The 

three variables representing set aside, set aside for rape-seed and set aside for sunflower were 

common to all the models. These crops are not very interesting economically, and their part in 

the total arable land is imposed by the government. The economic instability does not affect 

their practice. For these reasons, we did not use interval coefficients for them and kept the 

original parameters (gross margins) of MAORIE. Hence, for our (ILP) models, the number s of 

interval valued coefficients varied between 5 and 7 (the 5-7 first variables in the models). 

An important point in our experiments was the choice of the intervals for the objective function 

coefficients. We tested 5 various sets of interval coefficients: for the jth implementation, the in-

tervals for coefficients were obtained by ( ) ( )[ ]iiii cjucjl 1.01,1.01 −=−=  where (i = 1, �, s) 

were the original coefficients (gross margins) used in the MAORIE model. Remark that, as the 

experiment index j goes from 1 to 5, the intervals get larger and the possibility that the various 

crops have  intersecting interval gain increases.  

We used the GAMS software to implement the given minmax regret algorithm and the linear 

and integer programming modules of the CPLEX solver. For the initial regret candidates to start 

the algorithm, we used the optimal solutions of MAORIE. 
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To evaluate the proximity of the jth minmax regret solution  to the observed solution 
j

kx
obs

kx
 for 

the farm k, we used the following performance measure:  

( ) ( )
∑

∑ −

==

i

obs
i

i

obs
i

j
iobsj

jj

x

xx

TotalLand

xxL
xM

,1
1  

The results are recapitulated in Figures 3 and 4. 

5.1 Analysis of the Results 

Let us note two effects of the penny-switching nature of conventional LP in order to better un-

derstand the utility of the MMR approach: 

Observation 1 Since the gross margin of irrigated peas is in all cases inferior to irrigated corn, 

MAORIE allocates all the irrigable surfaces to this second crop, although the production of 

the first one has been observed in 20 out of 30 farms. 

Observation 2 For the cases where the gross margin of wheat is inferior to the gross margins of 

rape-seed and sunflower, no surface was allocated by MAORIE to the wheat although its 

production was observed in every case. 

The principal effect of the ILP approach with the MinMax Regret is: 

Observation 3 For the two previous cases, when the differences between the gross margins is 

relatively small, the minmax regret approach gives more "balanced" solutions, and this 

more so when the interval coefficients gets larger (i.e., when j increases). 

This last observation seems natural. In fact, as the intervals get larger, the interval gains for dif-

ferent crops start to overlap or, if they already have an intersection, they become more overlap-

ping. It becomes more difficult to anticipate which crop will be more profitable. Hence, the 

minmax regret approach tends to return more and more balanced solutions as the sizes of the 

intervals increase. 

The effects of the minmax regret approach on the proximities obtained at the microscopic level 

are considerable: for 26 farms out of 30, for all the sets of intervals considered (j = 1, �, 5), the 

relative distance ( ) of the minmax regret solution to the corresponding observed solution is 

smaller than the relative distance of the MAORIE's optimum solution to the observed one. Con-

cerning the improvement in the proximities to the observed solutions, the worst proximities 

(

jM1

( )jM1max ) obtained for these 26 farms provide an average improvement of 11% with respect 

to MAORIE's proximities (denoted by  ( x ) in the figures, where stands for the 

MAORIE's optimal solutions for the corresponding farms). We tried to go deeper in our analy-

sis and reconsidered the initial data with the obtained solutions to extract some possible char-

acterization of the 26 cases where the minmax regret approach improves the representativity of 

MAORIE, as well as the non improved 4 cases. These four last farms do not share any distin-

guishable properties (concerning their initial data: gross margins and observed solu-

tions).Therefore, the non improvement with the minmax regret approach is rather due to the 

particular configuration of the parameter values of the corresponding elementary models. 

Hence, nothing indicates a possible characterization of these isolated cases. For the other 26 

farms, the improvement is mainly due to the fact that, in general, farmers adopted more bal-

anced strategies of allocation than the ones suggested by MAORIE, especially concerning the 

jM1

opt optx
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trio wheat - sunflower - rape-seed and the duo irrigated peas - irrigated corn. From these obser-

vations, we may conclude: 

Conclusion 1 In the cases where the farmers choose a balanced allocation, the min-max regret 

solutions tend to improve the representativity of the model, otherwise the proximities to 

the observed solutions get worse. 

Conclusion 2 Farmers' decisions are not based on the maximization of the profit logic underly-

ing the MAORIE model. 

 

1
1

1
2

1
3

1
4

1
5 

M1 M1 M1

M1

cha17 I26 0,28 0,27 0,30 0,27 0,34 0,29 0,27 0,34 0,34 

cha17 I15 0,70 0,54 0,46 0,50 0,48 0,53 0,46 0,70 0,86 

2sa79 0,60 0,60 0,41 0,39 0,45 0,49 0,39 0,60 0,69 

2sa80 0,88 0,72 0,57 0,57 0,61 0,67 0,57 0,88 0,89 

cha5 I5 0,41 0,28 0,27 0,31 0,32 0,32 0,27 0,41 0,41 

cha7 I31 0,22 0,22 0,31 0,38 0,39 0,30 0,22 0,39 0,32 

cha74 I36 0,29 0,28 0,35 0,40 0,42 0,35 0,28 0,42 0,41 

cha86 I38 0,32 0,32 0,20 0,17 0,16 0,24 0,16 0,32 0,57 

chmEDO 0,92 0,92 0,81 0,76 0,73 0,83 0,73 0,92 0,92 

vie122 0,48 0,37 0,28 0,23 0,20 0,31 0,20 0,48 0,59 

vie25 0,44 0,43 0,35 0,30 0,27 0,36 0,27 0,44 0,56 

vie37 0,38 0,39 0,36 0,28 0,23 0,33 0,23 0,39 0,40 

vie80 0,36 0,42 0,46 0,47 0,45 0,43 0,36 0,47 0,30 

2sa102 0,49 0,23 0,16 0,15 0,16 0,24 0,15 0,49 0,54 

2sa104 0,87 0,82 0,69 0,63 0,60 0,72 0,60 0,87 0,87 

2sa125 0,79 0,78 0,71 0,68 0,65 0,72 0,65 0,79 0,87 

2sa128 0,89 0,87 0,76 0,68 0,69 0,78 0,68 0,89 0,90 

2sa137 0,42 0,43 0,39 0,42 0,39 0,41 0,39 0,43 0,31 

2sa163 0,54 0,50 0,44 0,44 0,43 0,47 0,43 0,54 0,76 

2sa165 0,45 0,23 0,27 0,23 0,24 0,28 0,23 0,45 0,79 

2sa166 0,57 0,47 0,39 0,36 0,34 0,43 0,34 0,57 0,65 

2sa168 0,44 0,44 0,44 0,41 0,39 0,42 0,39 0,44 0,64 

2sa17 0,28 0,19 0,16 0,20 0,21 0,21 0,16 0,28 0,59 

2sa191 0,68 0,60 0,56 0,57 0,58 0,60 0,56 0,68 0,51 

2sa37 0,34 0,31 0,33 0,31 0,23 0,30 0,23 0,34 0,44 

2sa44 0,50 0,43 0,42 0,50 0,51 0,47 0,42 0,51 0,64 

2sa66 0,22 0,17 0,19 0,24 0,24 0,21 0,17 0,24 0,41 

2sa67 0,50 0,31 0,17 0,06 0,08 0,22 0,06 0,50 0,55 

2sa71 0,49 0,39 0,39 0,39 0,40 0,41 0,39 0,49 0,77 

2sa87 0,26 0,23 0,29 0,35 0,38 0,30 0,23 0,38 0,49 

Figure 3. Proximities obtained by the minmax regret approach versus proximities obtained by 

MAORIE (M1( )).
opt

x  

When we consider the proximities at the global level (the sum of the production levels), we 

have M11 = 36%; M12 = 30%; M13 = 24%; M14 = 26%; M15 = 27% versus M12 = 38% for MAORIE. As 

we can see, there is some improvement in every case (see Figure 5). The proximities keep im-

proving for j=1, 2, 3, then slightly deteriorate for j=4, 5. For the first two experiments where the 

dispersions were relatively small (±%10; ±%20), it seems that there is no real benefit to use the 

minmax regret approach, since the improvements (36%, 30%) are marginal with respect to 

MAORIE's representativity (38%). For the last three experiments (j=3, 4, 5), the improvements 

are better (24%, 26%, 27%) and relatively stable.  
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But these observations hardly mean that our initial hypothesis, i.e. the farmers decide using the 

minmax regret criterion, is true. Although we obtained some improvements, the best global 

achievement (M13 = 24%) was still very high. Also, at the microscopic level, there was only one 

farm for which the proximity to the observed behavior dropped below 10% (and only 5 farms 

below 20%). Thus, we can conclude the following: 

Conclusion 3 The minmax regret approach is not the approach taken by the farmers to decide 

on their surface allocations, at least not for the sets of intervals we considered. Although 

some improvement was obtained, our initial hypothesis seems only partially true, since the 

improvements are hardly satisfactory. 

The last conclusion requires that the following questions be answered: Why could further im-

provements not be obtained? Is this due to the sets of intervals we used? Or is this because the 

minmax regret criterion does not reflect the farmers' decision criterion? If not, then what con-

stitutes their criterion? Could better solutions be obtained? Using which criterion? These ques-

tions are related to the three options we adopted during the study: the acceptance of the feasible 

regions of the elementary models as adequate, the choice of minmax regret as the criterion to be 

tested and the set of intervals we used. 

It is difficult to predict if some other set of intervals may lead to better proximities. It is possible 

to undertake a trial and error process, such as the calibration procedure for the MAORIE, to 
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find a more satisfactory set of intervals. Still, in the event of success, it might become difficult to 

interpret whether the results are merely mathematical or the farmers' behavior has been repro-

duced. 

 

 

Figure 5.  
Comparison of the MMR 
Solutions with the 
Observed and the 
Optimized (MAORIE) 
Solutions at the 
Macroscopic Level. 
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Concerning the criterion we tested, one thing is clear: in reality, farmers have many objectives, 

such as minimization of the management complexity, minimization of total work time, fulfill-

ment of the conditions of some contract, etc. The results of our experiments indicate that min-

max regret better represents the farmers' decisions than the gross margin. However, it is very 

possible that it does not represent all of the farmers' objectives. 

The last point to analyze is the assumption that the feasible regions are adequate. Since we did 

not obtain a satisfactory proximity, we must ask ourselves about the validity of this assumption. 

If the non reproduction of the observed behaviors is due to an inaccurate specification of the 

feasible regions, then this means that the observed solutions are not close to their corresponding 

sets of potentially optimal solutions. In this case, reconsideration of the feasible regions would 

be necessary. 

Of these three possible sources for the partial improvement of the MAORIE's representativity, 

we believe that the priority should be given to the investigation of the last one. Hence, the rep-

resentativity of the feasible regions should be analyzed in order to shed some light on the pre-

vious questions. 
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To evaluate the quality of representation of the feasible regions, information on their structure, 

especially concerning the sets of potentially optimal solutions corresponding to each elementary 

model and the positioning of the observed solutions with respect to these sets is necessary. Let 

us note that, in the context of interval linear programming, such an "information gathering" 

could neither be done using the minmax regret approach, nor using any of the other methods of 

the second kind of attitudes (see §3.2). The reason is that these approaches return a unique (or a 

small number of) solution(s) that cannot give the required information. Thus, we see that meth-

ods that use a specific criterion to select a solution for (ILP) models, in spite of their possible 

utility in a decision-making context, have a limitation in a behavior anticipation context. On the 

other hand, however, analysis of the structures of the sets of potentially optimal solutions is 

possible with the first kind of attitude, i.e. by characterizing the sets of potentially optimal solu-

tions or by simply exploring them. Some results on this subject will be reported in a future 

work. 

6. Conclusions 

The aim of this study was to improve the representativity of the MAORIE model, a linear pro-

gramming model intended to represent the behavior of the farmers with respect to their surface 

allocations to various cultures and to study the impacts of the political changes on cultivated 

surfaces. The principal goal of this work was to investigate the utility of modelling the uncer-

tainty by interval valued parameters at the objective function level. The resulting model from 

this approach is called an "interval linear programming model".  

Within this framework, we considered thirty elementary linear programming models (forming 

MAORIE) corresponding to the farms of the Poitou-Charentes area. We hypothesized that 

farmers' behavior could be better represented using the minmax regret criterion. To test this 

hypothesis, the Minmax Regret (MMR) algorithm was implemented for each of the thirty mod-

els. The aim of the algorithm is to find the solution minimizing the maximum regret for a linear 

programming model with objective function coe-cients in the form of intervals. Five experi-

ments with five sets of intervals were performed. 

Analysis of the results and a comparison with the optimal solutions of MAORIE for the ele-

mentary models showed that the MMR approach had a character which softened the sometimes 

abrupt nature of the linear programming, for which the least difference between the unit profits 

implies an allocation. On the other hand, the MMR approach gave better balanced and distrib-

uted solutions, and this more so when the overlapping of the interval profits for various crops 

increased. 

It was shown that whenever a farmer chose a relatively balanced surface allocation, especially 

concerning the trio wheat - sunflower - rape-seed and the duo irrigated peas-irrigated corn, the 

solutions of minmax regret tended to improve the reproduction of the observed solution. We 

also observed that our hypothesis was only partially true. Although some improvements in the 

representativity were achieved, the proximities obtained by the MMR approach were not satis-

factory enough to support that the farmers decide on their surface allocations according to the 

logic of minmax regret. 

Possible reasons concerning the modelling phase and the working hypotheses, which caused 

the non-reproduction of the observed behavior, were discussed. We argued that the structures 

of the sets of potentially optimal solutions of the elementary models should be analyzed to bet-

ter understand the reasons for unsatisfactory representativity. Some experimental results and 

comparisons thereof will be discussed in a future work. 
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