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Abstract: Regional bioenergy models serve to match areas of high biomass production with suitable 
locations for plants to convert this biomass to energy. Increasingly, digital data for such models is 
becoming available at finer spatial scales. One important category of data still poses a problem. Agri-
cultural statistics are collected at the farm level but only made available to researchers at the agri-
cultural district level. This paper investigates the economic and environmental need for more 
spatially detailed models and identifies a number of obstacles in the disaggregation of district-level 
agricultural statistics. It concludes that various options for disaggregation exist but disaggregation 
comes at a price. The real benefits of disaggregation can only be assessed if an analysis is repeated at 
different levels of disaggregation. 

Keywords: Agricultural statistics, disaggregation, spatial modelling, biomass energy. 

 

Introduction: the benefits of more geographical detail in regional 
biomass energy models 

Bioenergy systems can be modelled by using the aggregate statistics of a large geographical 
area (e.g. state level). The actual planning of bioenergy plants which provide heat and/or elec-
tricity, requires a more geographically detailed approach to match areas of (potentially) high 
biomass production with suitable locations for biomass power plants (e.g. Rozakis et al., 2001a; 
Towers et al, 1997; Dagnall et al., 2000). Models which are designed to assist in such planning are 
termed �regional bioenergy models� in this paper. As with many other mixed-data, computer-
based land-use models, these models are recent developments, stimulated and enabled by the 
rapid advances in IT technology with respect to hardware, software and data capture. Concep-
tually however, these models are not new. In quantitative Human Geography, such models are 
generically known as �location-allocation models�, or more generally �spatial interaction mod-
els�, which aim to increase efficiency of a system by matching the spatial distribution of loca-
tions of demand with the spatial distribution of locations of supply (e.g. Bailey and Gatrell, 
1995; Birkin et al., 1996). But what is the actual benefit of developing such regional bioenergy 
models, and how much spatial detail should such models ideally have? 

The most important benefit, and the main reason for developing these models, lies in the fact 
that both the potential availability of biomass, and the potential demand for electricity or heat-
ing, are highly heterogeneous in space. If a bioenergy system is to compete with fossil fuel, then 
sufficient biomass must be produced in locations of low (opportunity) cost and transported 
over relatively short distances to the plant. Three generic stages of spatial analysis for bioenergy 
systems can be recognised (Figure 1): 

1.  Estimating the regional distribution of land suitability or potential crop yields. This can be 
based on existing suitability maps, a customised analysis of the relevant bio-physical vari-
ables, or observations of land use.  
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2.  Building on this physical information, the likelihood of uptake of an energy crop or 
availability of crop residues must be estimated across that region. This expected land use 
may be based on current conditions or a change in market conditions such as a policy in-
tervention (e.g. subsidies for energy crops). 

3.  Using the spatial distribution of the likely amount of available energy crops or crop resi-
dues to establish the best location for the power plant. This stage of analysis also requires 
the consideration of planning constraints and infrastructural necessities such as roads and 
substations of the national electricity grid in the vicinity (e.g. Towers et al. 1997, Dagnall et 
al. 2000).  
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Figure 1. Three stages in spatial analysis for bioenergy systems. Parallelograms represent maps 
resulting from each of the three stages of the analysis. 

GIS-based spatial analysis requires the availability of a number of georeferenced digital data 
sets. Dependent on the available data sets, the analysis can take place at a variety of spatial 
scales. Developers of bioenergy plants in the UK do not use GIS for plant siting. They simply 
select sites by comparing paper maps of roads, power lines and biomass potential [1]. Their 
�eyeball� method of spatial analysis does not require a high level of spatial detail. However, 
maps of biomass potential (spatial analysis stage 1 or 2) are typically created in GIS, combining 
different spatial data-sets such as soil and land-use data. The need for such maps underlines the 
importance of access to detailed spatial databases. In addition, there are at least two environ-
mental reasons to strive for a more detailed level of spatial analysis. 

First of all, many of the environmental impacts of a regional bioenergy system are site depend-
ent. It is possible to identify a range of site dependent environmental impacts or externalities of 
the plant, the biomass source or the transport element of the bioenergy system. These impacts 
are not limited to tangible emissions to air, soil and water, but can also include less tangible is-
sues such as impacts on the landscape and biodiversity. Some of these impacts of the biomass 
source may even be positive. Sensitively designed and located fields of biomass crops may for 
example reduce the risk of erosion, provide habitat to species or cover up �eyesores� in the land-
scape such as quarries and factories . In the UK guidelines have been developed for short rota-
tion coppice (SRC) to minimise the negative impacts and stimulate the positive impacts (British 
Biogen, 1996). The site-dependency of environmental impacts has been acknowledged envi-
ronmental economic literature which offers a number of methods to quantify these externalities 
in monetary values (Saez et al., 1996; Groscurth et al., 2000; van der Horst, 2002). 
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Secondly, the emissions inventory of a bioenergy system is sensitive to the mode of transport 
and the distance over which the fuel is transported. More detailed maps allow a better estima-
tion of these. Since most bioenergy schemes are sponsored by the government with (amongst 
others) the aim to reduce green house gas (GHG) emissions, there is an implicit need to identify 
the �GHG optimal� geographical catchment area of the system. This implies a need to investi-
gate the environmental trade-offs between plant size and transport distance. LCA studies which 
compare different scales of production are rare. Andersson and Ohlsson (1998) did such a study 
for bakeries and they concluded that �there is a limit beyond which the increased efficiency that 
can be obtained on a larger scale production is outweighed by the environmental loads from the 
distribution�. Hart (1997) provides an example of this trade-off between optimal economic effi-
ciency and optimal environmental performance. He calculates the energy loss embodied in the 
transport of barbecue charcoal from the place of production to UK retail outlets, comparing 
small scale UK producers with large scale producers in Brazil or South-Africa. The transport 
from the economically competitive, large scale producers in Brazil or South-Africa requires 14-
17% of the energy embodied in the charcoal. Small scale regional UK producers, who can not 
compete with the South African and Brazilian imports, requires less than 3% of the charcoal en-
ergy for transport. Börjesson and Gustavsson (1996) present a relative measure for defining the 
catchment area of a plant in terms of the impact of transport distance (for different modes of 
transport) on environmental performance. They calculate the transport distances at which the 
various emissions or the energy use of transport become as big as those from the actual pro-
duction and harvest of the biomass crops. 

The studies of Hart (1997) and Andersson and Ohlsson (1998) indicate that the environmental 
performance of the system is more sensitive to transport distance than the economic perform-
ance of the system would be (although the transport cost can be highly relevant for competition 
with fossil fuel). Transport costs are indeed only a minor component of the total cost of biomass 
fuel (e.g. Kallivroussis et al., 1996). And because an important amount of the economic cost of 
transport is fixed in the (un)loading stage, the marginal cost of increased transport distance is 
small. This issue of optimal economic and environmental scale would merit further research. 
Such research would require a closer look at the performance of small scale bioenergy systems 
and alternative modes of transport. This in turn would require more detailed spatial data.  

It is clear from the above text that spatial detail in regional bioenergy models can be desirable. 
This raises the inevitable question of data availability. In general, detailed spatial databases of 
roads or power lines are widely available these days, if not always for free. This situation can be 
quite different for spatially detailed agricultural data. Agricultural data can be obtained from 
(widely available) remote sensing imagery, but the most detailed information must be collected 
from the farmer directly. Agricultural statistics are collected annually from each farmer (farm 
census), aggregated over the whole farm over the course of a whole year. In order to �protect the 
privacy of the individual farmers�, this data is further aggregated to the level of an agricultural 
district or parish before it is made available to researcher. 

The aim of this paper is to present an overview of the main issues involved in the attempts to 
make better use of district level agricultural statistics when modelling bioenergy systems. 

Models and data requirements for estimating the distribution of 
available biomass 

Prior to investigating how this spatial aggregation can be undone, it is essential to understand 
why this aggregation can be a problem for the accurate estimation of available biomass. Three 
conceptually different types of models can be identified for this estimation. These models can be 
listed in order of increasing need of different types of data: models focused on land, models fo-
cused on the farm and models focused on the farmer. 

Land based models are basically the same as the first stage in Figure 1, using a land suitability 
classification or a crop yield model as a proxy measure of the likely amount of a crop to be pro-
duced.  Bibby et al. (1982) provide an example of a general suitability maps for agriculture, 
ranking the agricultural potential of the land according to a range of biophysical variables such 
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as soil characteristics, hydrology, slope etc.. Most of these variables have been measured in the 
field and converted to map form. More sophisticated are maps of estimated crop yield, wich 
combine these data with a crop growth model (e.g. Bateman and Lovett, 1998). Finally it is also 
possible to simply map the actual cultivation of the relevant crop or other crops with similar 
biophysical requirements. This can be done through remote sensing or the use of farm census 
data. Observed or modelled suitability for alternative crops can be used as a rough estimate of 
the opportunity cost of the land.  

Farm based models place the likelihood of a crop being grown in the wider context of farm 
management and require the kind of data which is typically collected in the annual farm census. 
The simulation of decision making in farm based models is much more realistic than that of 
land based models. A farmer makes the choice of land use for each field as a part of an overall 
farm strategy. For example, issues such as crop rotation or the need of bedding material for life 
stock will clearly influence the farmer�s choice of land use in ways that can not be anticipated 
with the land model only. Farm-based models for �traditional� micro-economic analysis are 
typically run at the regional or national level without taking an interest in the spatial distribu-
tion of farms and their statistics within the area of aggregation (e.g. Rozakis et al., 2001b). More 
spatially explicit farm based models require the geo-referencing (i.e. attaching x,y coordinates) 
of the agricultural statistics (e.g. Skop and Schou, 1999).  

Farm based models will typically assume that the farmer�s behaviour is that of a profit maxi-
miser. In contrast, Farmer based models try to explain farmer behaviour in terms of social and 
demographic variables as well as economic ones. For example a farmer nearing retirement age 
may be more interested in SRC�s low labour input (i.e. good for extensification). The long life 
cycle of an SRC plantation (up to 25 years) may in turn make the crop less attractive to farmers 
who will pass the farm on to their heirs within that time period (i.e. bad for flexibility). They 
may also consider landscape or wild life impacts, the benefits of wind breaks etc. Farmer based 
models require the same data as farm based models, plus socio-demographic data which may 
be derived from the population census or separate interview-based surveys (e.g. Wynn et al., 
1998).  

It is clear that the modelling of uptake of energy crops should in principle be more accurate and 
realistic if it takes place at the farm level and adopts a broader view of the farmer�s motivation, 
including the possible importance of non-economic motives. This means that the farm census 
data which is central to the farm(er) based models, but too much spatially aggregated, needs to 
be linked to the type of map based data used in land based models at finer scales than the dis-
trict level.  

How can the access to disaggregated farm statistics be improved?  

A number of solutions for improved access could be proposed. One (legal) solution would be 
the provision of full access after signing a confidentiality agreement. The trend towards more 
transparency and accountability in public policy, and the level of support to the farming sector 
provided by the Common Agricultural Policy (about half the EU budget), could be an argument 
in favour of more public access to farm data.  

More technical solutions include various options which do not reveal the full amount of infor-
mation to the researcher. By far the best technical solution would be the development of intelli-
gent query tools for minimal aggregation, guaranteeing a pre-defined level of privacy. Such a 
system would aggregate the farm statistics on the basis of the researcher�s expressed need for 
information, providing an (interactively operated?) aggregation which will have the lowest pos-
sible impact on the accuracy of the proposed research. While it will take time and money to de-
velop such a system, it should be noted that the benefits would not be solely for the researchers. 
The current �rigid� practice of aggregating within the often historical boundaries of agricultural 
districts, does not automatically guarantee privacy, and certainly does not guarantee it in equal 
measures. This is well illustrated by Gimona et al. (2000) who note that the smallest agricultural 
district in Scotland is only 1.3 ha (an island with one farm), more than 86,000 times smaller than 
the largest district.  
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But for the time being, researchers must come up with their own solutions to the aggregation 
problem of farm census data. Ideally the researcher would like access to an integrated and geo-
referenced database which contains for every farm in the region at least the following informa-
tion: Field boundaries, potential and current land use of each field, all fields belonging to the 
farm, other physical and economic farm data, other socio-demographic data about farmer and 
the farming household.  

In some European countries, the various separate items on this shopping list do already exist in 
digital format. There is a growing range of digital maps of most biophysical phenomena, and 
derived suitability maps. The amount of remotely sensed data is also ever growing, allowing a 
better identification and analysis of land use and spatio-temporal land use change patterns. 
Digitised boundaries of administrative areas are now often in the public domain, including 
those of agricultural districts to which agricultural census data have been traditionally assigned. 
Many European countries have digitised cadastral maps which display the boundaries of land 
ownership at the parcel level, while population census data have been made more GIS-friendly 
(Martin, 1997) [2].  

What are the opportunities and disadvantages of attempts to use these separate databases to 
disaggregate the farm census data currently available at the district level?  

Using spatial databases to disaggregate district level farm census data. 

Two basic types of complementary disaggregation methods can be recognised. The simplest 
method is to seek to reduce the size of part of the district to which the farm statistics can be as-
signed. This is done by identifying non-relevant areas such as water, forests or urban land. 
These areas can be identified from existing maps or remotely sensed imagery and removed 
from the map of agricultural districts.  

The next step is to assign specific farm census statistics to parts of the (remaining) agricultural 
areas within the district. This entails the mapping of smaller sub-district areas and classifying 
these areas on the basis of those farm statistics which are required at a finer spatial disaggrega-
tion level. The district level statistics can then be disaggregated and assigned to the appropriate 
classes of the new sub-district areas. Classification of sub-district areas is mostly based on 
sievemapping, which is in turn based on Boolean expert systems. The most sophisticated of 
these classifications utilise fuzzy theory (Zhang and Stuart, 2001) or even artificial neural net-
works (Wang, 1994). The variety of examples in the literature is great, both in terms of the data-
bases and the methods used. Probably the most straight forward applications are the use of 
land suitability maps or the use of satellite imagery to identify patters, validated by control 
points on the ground (e.g. Walker and Mallawaarachchi, 1998). Skop and Schou (1999) provide 
an example of a more experimental approach, using an expert-based association between farm 
type and soil class to disaggregate district level farm statistics to the relevant soil class by cre-
ating thiessen polygons based on farm house location (from a post-code map) and sized ac-
cording to farm size. They acknowledge the need to extend their spatial farm-based (GIS) ap-
proach to include farmer behaviour, but this modelling gap seems to be wide open at the 
moment. Gimona et al. (2000) provide and example of a statistical approach, combining an ex-
isting land cover map which was interpreted from high resolution aerial photographs with a 
grid of land suitability observations on the basis of a cluster analysis of joint observations.  

Problems with disaggregation 

Disaggregation of farm census data takes time and effort, but that is not the only disadvantage.  
Additional databases may be hard to find or expensive to purchase. The overlay of different 
spatial databases may result in the creation of sub-district areas of unfavourable sizes (too 
small, too diverse) or shapes (too elongated) to disaggregate  district level farm statistics to. Dif-
ferent databases may also have a poor compatibility because of differences in scale, mismatch of 
boundaries and uncertainties about data quality. Data quality may not even be consistent across 
a single spatial database. Gimona et al. (2000) demonstrate this by investigating the correlation 
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between the district level farm statistics and the categories on a land use map derived from ae-
rial photographs. They notice a difference in correlation between the large districts of marginal 
agriculture on the mountainous Scottish west coast and the more agriculturally diverse low-
lands where aerial photographs were more difficult to interpret.  

Another well known problem, the Modifiable Areal Unit Problem (MAUP) may occur:  

1.  The outcome of any spatial analysis may be scale dependent. If the same analysis is carried 
out on the same dataset at a different level of spatial aggregation, the result of the analysis 
might be different.  

2.  The outcome of any spatial analysis may also be dependent on the configuration of areal 
units (e.g. the shape of the agricultural districts). If the same analysis if carried out on the 
same dataset with differently shaped (boundaries of) areal units, the results of the analysis 
might be different. 

Unlike the effects of an irregular areal unit configuration, the effects of scale can be anticipated 
to some extent. This anticipation is based on the comparison between the spatial scale of the 
analysis and the spatial scales at which the phenomena under investigation actually take place. 
It is advisable to identify the basic units and derive optimal scales and zonal configurations for 
the phenomena being studied (Openshaw, 1984). A farm(er) level model of land use change for 
example, should ideally be measured at the spatial scale and areal configuration of the individ-
ual field.  It is also advisable to carry out a sensitivity analysis (Fotheringham and Wong, 1991), 
for example by comparing the outcomes of the analysis carried out at the best achievable disag-
gregated level, as well as at the level prior to disaggregation, i.e. the district level. 

Conclusions 

Most datasets can be characterised by their level of aggregation. The data collected during the 
annual farm census is aggregated by the farmer over a spatial area (the farm) and a time period 
(a year), and then further spatially aggregated to the district level. The level of �acceptable� ag-
gregation depends on the purposes for which the data is to be used. Improved access to more 
sub-district level agricultural data, may be primarily relevant from environmental perspectives 
rather than economic perspectives. The number of ways to disaggregate farm statistics may be 
as big as the number of available spatial databases with boundaries which cut through the farm 
district. The most advanced methods allow for a targeted disaggregation based on statistical de-
scription of the data sets or fuzzy membership functions. In practice the objectives of a study 
may have to be watered down because of insufficient or poor quality data. The level of dis-ag-
gregation is therefore often a practical and pragmatic decision, taking into account the trade-off 
between the preferred level of spatial detail on one hand and the effort of disaggregation and 
reliability of the results on the other. Outcomes of spatial analysis are known to be affected by 
the level of aggregation. Best practice should be based on explicit descriptions of the datasets 
and processes under consideration. The extent to which a regional bioenergy model is actually 
improved by increasing the level of spatial detail through disaggregation of agricultural statis-
tics, can only be assessed by comparing the outcomes of analyses by the model at different lev-
els of spatial disaggregation.  

Notes 

[1]  Personal communications with Keith Pitcher, head of First Reneables Ltd. (the developer of 
the ARBRE plant in Yorkshire, a 10MW wood gasification plant) and Peter Billins, chair-
man of British Biogen (the UK trade organisation for the bioenergy sector). It must be 
noted that within the UK context, competition over biomass resources such as SRC has not 
yet occurred. Fuel competition from existing plants will increase the need for a more sensi-
tive siting strategy for new plants. This is likely to require a more complex GIS-based 
model which utilises more data at finer resolutions. 

[2]  In addition to the traditional farm census, a far more spatially detailed database is emerg-
ing. Under the EU�s Integrated Administration and Control Scheme (IACS), farmers must 
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provide land use data at the field level for the administration of agricultural subsidy pay-
ments. Monitoring and control of these payments necessitates the accurate mapping of 
IACS field parcel data (e.g. ADAS, 2000). However this database may not have national 
coverage, is still off-limit to most researchers and lacks integration with the more extensive 
�normal� farm census data (Gimona et al., 2001). 
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