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SUMMARY – The assimilation of remote sensing data in hydrologic models allows improving water 
and energy balance predictions as assessed in several literature articles in the last decade due to the 
similar pixel size at which digital information from remote sensing and distributed water balance 
modeling refers. In this paper we present an application of the combined use of remote information 
and hydrological modeling on a monitored basin in the Italian semi arid area, using the remote 
sensing analysis for hydrological model parameterization and model validation. In fact we retrieve at 
pixel scale vegetation parameter as the leaf area index (LAI) used in the computation of 
evapotraspiration and surface soil moisture images used as �internal� control variable of model 
behavior. The LAI is obtained from Quikcbird satellite using visible and near infrared images while the 
soil moisture is retrieved from microwave ASAR (Advanced Synthetic Aperture Radar on the 
European Space Agency satellite Envisat). Discussion of result is then provided in term of data 
reliability with perspective of operative use as aid the in the irrigation practice and in a real time 
monitoring of fluxes between land surfaces and the atmosphere boundary layer. 
 
Keywords: Water balance, hydrological modeling, remote sensing, soil moisture 
 
 
 
1. INTRODUCTION 
 

The agricultural development in semi-arid regions, such as Italy�s southern region and islands, 
suffers from water scarcity. These impacts are associated with broad desertification processes of the 
Mediterranean area (e.g., Piervitali et al.1999; Showstack, 2001) and increased pressures on water 
supplies by civil and industrial utilizations. 

 
Achieving a rational and efficient use of water and other agro-forest resources through 

employment of modern information systems (D�Urso and Santini, 2001) is a primary objective in these 
area for the promotion of a �sustainable development� politic. 

 
Evapotraspiration, the combined flux of plant transpiration and evaporation fro soil, also known as 

the latent heat, strongly influence the soil water balance especially in semi arid regions. In fact 
transpiration fluxes exerted from the vegetation are still observable from surface dry soil due to the 
plants and routs dynamic. The interaction between soil moisture and vegetation dynamic, especially 
due to the strong non-linearity that characterize their relationship (Rodriguez-Iturbe, 2000), can 
present one of the main contribution in improving the real water demand for an agricultural district and 
the practice of irrigation trying to achieve a more efficient water use. 

 
Now days the development of �gis� based water balance models and the satellite sensors for land 

observation and monitoring can be a formidable tool for improve results in term of more accurate 
simulations and irrigation efficiency. The synergic approach of satellite data and distributed water 
balance parametrization is intuitive because both tools refer to the pixel scale, but at same time the 
quantitative use of this still need an improvement from researchers and techniques. 

 
Among variables and parameters the presented paper focus on the surface soil moisture variable 

and leaf area index parameter and how both can be estimated from comparison of satellite data and 
ground measurement. 

 
Soil moisture content is widely known to be the key state variable of the soil-vegetation-lower 

atmosphere system for its leading role in surface water and energy balances (e. g., Famiglietti and 
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Wood, 1994; Wigmosta et al., 1994), from the meso, small basin to the field scale. High resolution 
Satellite radar images offers the opportunity for monitoring surface soil moisture at high spatial 
resolution (up to 15 m), which is suitable for distributed mapping at the small scales of typical 
Mediterranean basins. In the last two decades researchers attract from this potentiality have shown 
performances and limits of this technology (Fung, 1992, Jackson, 1996, Mancini, 1999). In this paper 
we use the ASAR sensor high resolution images for estimating surface soil moisture via an inversion 
technique based on the Integral Equation Model of Fung et al. (1992). The obtained values are 
compared with ground measurement and water balance modeling results. 

 
Leaf area index is one of the variables that characterize the vegetation type and its stage, and 

according to the Montheit researches define the evapotraspiration fluxes using the well assessed 
Penman evaporation equations. The possibility to obtain robust empirical models for deriving LAI from 
visible and infrared spectral channels of remote sensing images in the Mulargia basin is investigated. 
Using several available satellite. In the paper only result from the Quickbird images (spatial resolution 
of 2.8 m) of May 2004 are discussed. 

 
 

2. THE CASE STUDY AREA 
 
The Mulargia river basin (area of about 65 km

2
, Figure 1) is a sub-basin of the Flumendosa river, 

located in center-east Sardinia. The basin has a key role in the water resources management of 
Sardinia and is an experimental basin of Politecnico di Milano since 2003. 

 
Mean annual rainfall for the basin is about 690 mm. The rainiest months are December and 

January, and the driest month is July. The soils in the basin are generally of modest thickness (< 1-2 
m), and the microrelief frequently rocky. The vegetation throughout the basin has been in part altered 
by human activities, with many areas (before covered by scrubs) converted to pasture. Urbanized 
areas are a minor component (about 2.5 %). Agricultural activities (other than the open pasture 
mentioned above) are also relatively minor, so that the use of water for irrigation is negligible. 

 
The area�s topography is available in a digital format through the DEM at 30 m spatial resolution 

(Figure 2). Geolithologic, land use and pedologic information of the Mulargia basin are also available. 
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Figure 1. Aerial photography of the Mulargia basin; symbols are listed in the legend. 
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Rainfall, air temperature data and discharge measurements (from Autority of water distritc: Ente 
Autonomo del Flumendosa), relatively to the basin outlet section, are available at hourly time 
resolution. Historical hydrologic data series of the Nurri station are also available for the period 1922-
1992.  

From April 2003 data of evapotranspiration, net radiation, latent and sensibile heat flux, soil 
moisture, surface temperature, air humidity and temperature, rain and wind velocity are measured by 
a micrometeorological eddy-correlation (e.g., Brutsaert, 1982) tower (Figura 1). During the same 
period field campaign were performed all over the basin measuring LAI and soil moisture (figure 1). 

 
Table 1. Timetable of the soil moisture field campaigns during 2003, computed by TDR (T) and 
gravimetric (G) measurements in several fields of the study area 

 Date 

Field 14/3 26/3 8/4 14/4 24/4 30/4 13/5 19/5 29/5 4/6 17/6 23/6 13/8 18/9 6/10 6/11 15/12

A T-G T-G T T-G T T T-G T T-G G G G G T T-G T-G T-G 
B T-G T-G T T-G              
C T-G T-G T T-G              
D T-G T-G T T-G              
E  T-G T T-G T T T-G T G G G G G T T-G T-G T-G 
F  T-G T T-G T T G T G  G G G T T-G T-G T-G 
G   T T-G T T G T G G G G G T T-G T-G T 
I    G T  T-G  G G G G G T T-G T-G T-G 

 
 

3. SOIL MOISTURE FROM SATELLITE DATA 
 
The retrieve of superficial soil moisture from remote sensing is very attractive from the hydrologic 

point of view due to the possibility to map the values at detailed pixel scale and the well known crucial 
role that this variable play on the fluxes rate and then on the overall water balance. For this reason 
several papers have pointed out performance and limit of different techniques from different sensor 
type. In this paper according to the most assessed literature on the argument we present an 
application of radar signal inversion for assessing soil moisture  

For shortness of space here after we mention the used procedure giving directly the results of the 
inversion techniques in terms of soil moisture. 

High resolution data of the new ASAR (Advanced Synthetic Aperture Radar) sensor aboard 
European Space Agency's Envisat satellite offers the opportunity for monitoring surface soil moisture 
at high spatial resolution, 30 m, with multitemporal, multipolarization, and multiple incidence angle 

images. The physical link between the radar signal, , and soil water content is given by the 
dependency of radar signal not only from the surface roughness but also from the dielectric constant 
of the soil (Figure 2). 

0σ

 

 
 

Figure 2. The relation between backscattering signal and dielettric constant for vertical , vv, and 
horizontal , hh, polarization. 
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Dielectric constant is a function of the soil moisture , ș, and can be modelled using the Topp 
equation (Topp et.al 1980) 
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The retrieving of the dielectric constant and then soil moisture from an operative radar images may 

be obtained from empirical as well physically based electromagnetic models. We have always 
preferred the use of the second type because a physically based model is site independent and this 
allows to increase the multitemporal frequency ( up to three days from 30 days in the operative 
satellite phase) using images belonging to data take that have not necessarily the same reading 
geometry. This peculiarity is essential for the soil moisture monitoring for which the temporal variability 
is much less than the 30 days repeat cycle ( Altese et al., 1996, Mancini et al., 1999, Quesney et al., 
2000)  

 
For a proper interpretation of the radar signal in this heterogeneous basin, first the effect of the 

vegetation is considered through the model of Quesney et al. (2000), which allows to the observed 
backscattering coefficient is the sum of a bare soil component and a vegetation component, which is 
function of the leaf size and the vegetation height. 

 
Then, for deriving the soil moisture from the radar signal (ı°) the Integral Equation Model (IEM) of 

Fung et al. (1992) and the Topp et al. (1980) model are used. Indeed, the IEM estimates the dieletric 
constant (İ) from ı° using: 

 

),,(... L
oo σεσσ =             (2) 

 
where ı ̣is the standard deviation and L is the autocorrelation length of the surface micro 

roughness. For solving (1) and estimating İ the ı e L parameters need to be determined trough field 
estimates of Ị̇, which can be made locally using, for instance, TDR measurements of the dielectric 
constant. But then one of two parameters needs to be determined for solving (2). In this sense, the 
new ASAR sensor provide double information because the images are double polarization so that the 
system of the two IEM equations can be solved for ı e L (known the İ value measured locally on the 
field): 
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After the local calibration of ı e L, basin maps of İ are derived, which basin and field spatial 

average are compared with model and ground measurements of soil moisture in following. 
 
 

4. VEGETATION PARAMETERES FROM SATELLITE DATA 
 
The observation of the Earth in the VIS and NIR regions of the electromagnetic spectrum by 

passive remote sensors have been used in the last three decades to monitor land surface and obtain 
important parameters especially in the case of vegetation cover, i.e. fraction of cover, vegetation 
index (VI), albedo, type classification and leaf area index (LAI) defined as single-side leaf area per 
unit ground area. 

 
In particular, for the latter, several studies have proved his dependence on the measurements of 

reflectance in the red (R) and infrared (IR) bands (e.g., Chen and Cihlar, 1996, Carlson and Ripley, 
1997, Green et al., 1997, Gupta et al., 2000) that can be combined in different vegetation indexes, the 
most common is called NDVI defined as: 

 

( ) /(NDVI IR R IR R= − + )            (4) 

 
A simple approach is based on empirical relationships calibrated upon limited ground-based 

measurements of LAI connected to the satellite passages. Since the relation between LAI-NDVI 
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suffers of a marked decrease in sensibility as the LAI increases due to a saturation of the remotely 
sensed signal, non linear functions are required to match the observations. 

 
The LAI measurements, as the retrieved NDVI, are intended spatially-averaged on a 

homogeneous vegetation pattern that contains within the image a consistent number of pixel. 
 
Limitations to this methodology have be found in many factors, such as leaf optical properties of 

the different species, orientation of the surface with respect to the illumination and viewing angle (in 
the case of topography), background effects of under-story and bare soil reflectance and errors in LAI 
measurements particularly when not destructive methods are adopted. 

 
An important point is represented by the spatial resolution of the satellite image that must be 

enough fine to not include heterogeneity effect within each pixel related to the degree of heterogeneity 
of the studied area (Chen, 1999, Friedl et al., 1995). A wild range of spatial resolutions are available 
and in this direction new satellites are permitting unprecedented high mapping (~1-10 m

2
) of the 

landscape (albeit at low spectral resolution). Consequently a resize of the map is required by the, 
usually coarser, distributed hydrological model grid, resize that takes into account the variability of the 
land cover especially in Mediterranean ecosystems where the patchiness of the vegetation 
distribution is on the order of several square meters. 
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Figure 3. Regression between LAI measurements and NDVI from QuickBird image; triangle dots are 
excluded from the regression. 

 
In this work not destructive LAI measurements were made using an optical instrument: LAI-2000, 

Li-COR (Welles and Norman, 1991), on different vegetation cover types and related to NDVI retrieved 
from QuickBird images (spat. res. 2.8m x 2.8m) acquired in May 2004. As shown in Figure 2, an 
exponential relationship is found to best match the observations (coefficient of determination equal to 
0.87) excluding two points that show singularity behavior. One of them was a field of sparse 
Eucalyptus trees where the presence of grass under-story increased the value of NDVI, the other one 
were located in a slope terrain that could produce an underestimation of NDVI. By this relationship a 
map of LAI was obtained and resized to a coarser grid (100m x 100m) using a nearest neighbor 
resampling (Richards, 1999) (Figure 4). 
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Figure 4. NDVI map from QuickBird image (spat. res. 2.8m x 2.8m) on the left. Evaluated LAI map 
(spat. res. 100m x 100m) on the right. 

 
 
In Figure 5 the frequency of LAI distribution is plotted for different size resampling showing that the 

statistic is preserved passing from the finer 2.8 m resolution to a coarser grid (100 m pixel size) used 
in the water balance model, even if a little decrease in the peak is observed. 
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Figure 5. Frequency of LAI distribution for different size resampling 

 
 

5. HYDROLOGICAL WATER BALANCE MODEL 
 
The basic force-restore equations for the prediction of the land surface fluxes and the evolution of 

surface temperature and moisture content are well described elsewhere (Noilhan and Planton, 1989; 
Noilhan and Mahfouf, 1996, Montaldo and Albertson, 2001). For context we review the soil moisture 
evolution equations here. The model considers near surface and deep (root zone) soil layers of 
depths d1 and d2 and volumetric water contents șg and ș2, respectively as shown (Figure 6). 
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Figure 6. Schematic representation of the bucket model 
 
 

The soil moisture in the two layers , that represent the state variables of the model evolve 
according to: 
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where Pg is the precipitation rate infiltrating into the soil calculated with the Philip�s infiltration 

model (Philip, 1960), Eg the bare soil evaporation rate, Etr the transpiration rate from the root zone 
(d2), q2 the rate of drainage out of the bottom of the root zone, ȡw the density of the water, șs the 
saturated soil moisture content, C1 and C2 the force and restore coefficients for soil moisture, and șgeq 
the equilibrium surface volumetric moisture content describing the hypothetical state when gravity 
balances the capillary forces such that there is no vertical water flow into or out of the thin surface 
zone of depth d1 (Noilhan and Planton, 1989). 

 
The drainage formulation that we adopt (unit gradient) to estimate q2 is different from that of 

Mahfouf and Noilhan (1996) and is described in Albertson and Kiely (2001). The value of șgeq is a 
function of ș2 and the soil hydraulic properties as derived by Noilhan and Planton (1989) 

 

sgeq yθθ =               (7) 

( )pp
xaxxy

8
1−−=             (8) 

s

x
θ
θ 2=               (9) 

 
with the two parameters a and p adjusted according to soil texture, since they account in a lumped 

sense for soil hydraulic properties. The relationships between soil moisture, ș, hydraulic conductivity, 
k, and matrix potential, ȥ̣ are described by: 
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where ks is the saturated hydraulic conductivity, �s the air entry potential and b the slope of the 

retention curve in logarithmic space (Clapp and Hornberger, 1978).  
 
The force and restore coefficients C1 and C2 are described by 
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where C1sat and C2ref are parameters capturing effects of soil texture and șl is a small numerical 

value that constrains C2 as ș2 approaches șs (Noilhan and Planton 1989). The C1sat and C2ref values 
are estimated from the literature on the basis of soil texture (Noilhan and Planton 1989). 

 
The model needs the following meteorological data as input: 
Atmospheric temperature, Ta, [K], Relative humidity, rh, [%], Rainfall, P, [mm], Atmospheric 

pressure, pa, [Hpa], Wind velocity, va, [m s
-1

], Shortwave radiation, Rswin, [W m
-2

].
 
Model parameters are given in the following table (Table 2). 
 

Table 2. Hydrological model parameters 

Symbol Unit Description Local value Basin average Std. dev 

șsat -m
3
m

-3
Soil moisture at saturation 0.52 0.44 0.07 

șwilt - m
3
m

-3
Wilting point 0.05 0.16 0.06 

șlim - m
3
m

-3
Field capacity 0.2 0.25 0.05 

Ksat m s
-1

Soil Hydraulic conductivity 0.0000001 0.0000004 0.0000003 

ȥsat m Soil potential at saturation 0.6 0.36 0.07 

B - Slope of soil retention curve 8.5 6.63 2.37 

fv % Fraction of vegetion cover Variable during the year 

Rsmin s m
-1

Minimum surface resistance 70 100 12 

LAI - m
2
m

-2
Leaf area index. Variable during the year 

Į - Albedo 0.2 0.14 0.039 

C2Ref - Value of C2 for ș2=ș2sat 2.2 1.06 0.6 

C1Sat - Value of C1 at saturation 0.00016 0.2 0.09 

d2 M Soil depth 0.32 0.65 0.35 

 
 
The model outputs are the following variables whose values are in part reported for the period of 

intense observation (April 17 2003 - September 24 2004): Surface temperature, Ts, [K], representative 
of bare soil and vegetation, Average surface temperature, T2 [K], Soil water content, șg [%], Soil water 
content in the root zone, ș2 [%], Net radiation, Rn [Wm

-2
], Latent and sensible heat flux, LE and H 

[Wm
-2

] 
 
 

5.1. Results at field scale 
 
First we applied the model at field scale, in particular we simulated the field at the Nurri 

meteorological tower. Part of the output data from the force restore method are plotted against the 
observed ones for the simulation period (April 17 2003 - September 24 2004). 
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Figure 7. Net Radiation flux observed (continuos line) and modeled (dash line) on the left and 
sensible heat flux observed (continuos line) and modeled (dash line) 

 
 
Effective evapotraspiration (Figure 8) and soil moisture computed in the two soil layers are given 

for the same field (Figure 9). As it is observable the computed and observed effective 
evapotraspiration show a good agreement in terms of fluxes ant cumulative value, as well as soil 
moisture behavior seems also well simulated from the water budget model. 

 

 
 
Figure 8. Daily rate and cumulative effective evapotranspiration observed (continuos line) and 
modeled (dash line). In the bottom figure a comparison with the potential evapotranspiration is also 
given. 

 233



 

 
 
Figure 9. Soil moisture behavior at the meteorological station field. Comparison of model simulations 
in the shallow and deeper soil layer, ground measurement. 
 
 
5.2. Basin scale application: comparison of soil moisture from radar and water balance model 

 
After model validation at the station site the water balance model is applied for the whole basin 

using a pixel resolution of 100 m, and all the distributed information available. 
 
Basin average soil moisture behavior is plotted for the whole observation period (Figure 10) 

against ground measures and retrieved soil moisture from radar data.. In addition, due to the 
distributed scheme of the model, validation of the simulation outputs are possible for each the field ( 
Figure 11) selected in the basin area ( Figure 1). 

 
Results from hydrological modeling, radar data and ground measures show a satisfactory 

simulation accuracy of this type of modeling approach and seems to be promising for the next 
research steps. 
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Figure 10. Time series of rainfall and ensemble-averaged soil moisture for the Mulargia basin. 
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Figure 11. Field average soil moisture from modelling, ground data and radar observation for 
Field_A(top left) Field_E ( top right), Field_F ( bottom left), Field_G (bottom right). 
 
 
6. CONCLUSION 

 
The paper present an application of an energy budget model to the water balance in an Italian 

semiarid zone showing a possible synergism with the information retrieved from remote sensing. This 
is done with the aim to improve the computational accuracy of the water balance so that a more 
controlled irrigation practice can be performed. With this aim in the paper the vegetation LAI 
parameter is estimated from satellite information, while the soil moisture retrieved from radar data was 
used as � internal� validation of the distributed water budget scheme.  

The vegetation parameterization is performed exploring the potentiality of the Quickbird satellite 
images for compute the leaf area index with the aid of ground measurement and used instead than 
traditional crop coefficient for compute vegetation evapotranspiration. Comparison from observed and 
simulated value of effective evapotranspiration seems to encourage the proposed approach for 
irrigation districts. 

Estimation of surface soil moisture from radar remote sensing show considerably good agreement 
with modelling result. This approach allow the model validation checking the internal state variable in 
addition to the classical check on the runoff volume performed at basin outlet when gauge station are 
available.  
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