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SUMMARY – Near Infrared instruments today are conveniently used by plant breeders and industry as spectral 
"multimeters" for instant analysis of a range of chemical components. These are based on multivariate computer 
calibrations by chemometrics (e.g. Partial Least Squares Regression - PLSR - and neural nets) facilitated by the 
instrument suppliers. Here we will demonstrate in barley how the near infrared spectra that are routinely 
measured for specific chemical screening by breeders can now be exploited for chemical-physical 
characterisation of whole samples or genotypes. From near infrared data in a Principal Component Analysis 
(PCA) score plot the breeder can now directly select cereal seed genotypes with improved chemical-physical 
quality by "data breeding". This is achieved by selecting recombinants which are positioned close to high quality 
control genotypes in the score plot. Differences in local spectra can be deduced by PLSR to physical/chemical 
components by destructive analyses. Mathematical data compression models are useful. However, they are all 
destructive to the finely tuned, highly reproducible spectral patterns that originate from the self-organised 
biological network represented by the developing barley endosperm. The evaluation of Near Infrared Reflectance 
Spectroscopy (NIRS) data must therefore include a final direct visual inspection of spectra to trace reproducible 
patterns of biological significance from individual phenotypes. The "LatentiX" graphic data interface that is 
demonstrated at the symposium is constructed to visualise spectral areas correlated to specific chemical 
components and genotypes. It is available at www.latentix.com. 

 
 
Genotype Classification by Near Infr ared Spectroscopy and Principal 
Component Analysis 
 
 Breeding for quality implies access to inexpensive and reliable screening methods for chemical 
and physical variables. The fact that near infrared data in the range of 800-2500nm after calibration to 
classical methods (Williams and Norris, 2001) can be used as a "multimeter" for a wide range of 
parameters substitutes at once tens of analyses previously made using 10 different instruments with 
just one measurement plus calibration checks. The required software, calibrated to the classical 
analyses, is usually supplied by the instrument manufacturer and based on chemometric pattern 
recognition data models (Martens and Næs, 1989) such as neural nets and PLSR. Today, plant 
breeders and the cereal industry routinely utilise Near Infrared Transmission (NIT) spectrometers for 
estimation of chemical composition in substances such as water, protein, starch and malt extract. The 
instrument directly measures the intact seed sample in the range 800-1050 nm in seconds. In this 
investigation we use a Visual - Near Infrared Reflectance (NIR) Instrument 400-2500 nm for more 
detailed information. It is not yet acknowledged by plant breeders outside the cereal laboratories that 
a PCA classification on seed NIT and NIR spectra is an efficient tool in breeding for quality and for 
characterisation of genetic and technological quality complexes. The recent textbook on Near Infrared 
Analytic Technology edited by Williams and Norris in 2001 just mentions the PCA option on a few 
pages without reference to plant breeding. However, Campell et al., 2000 demonstrated that NIT data 
evaluated by PCA can classify a range of single and double mutant maize endosperm genotypes. 
Discriminate PLSR was used by Wang et al., 1999 to predict the number of dominant R alleles in 
single wheat kernels by VIS-NIRS and by Delwiche et al., 1999 to identify different wheat-rye 
translocation lines by NIRS. We demonstrated the usefulness of PCA on NIRS for classification of 
genetic and environmental differences in a barley endosperm mutant material (Munck et al., 2001).  
 
 We were surprised by the genotype specific patterns of the spectral NIRS patterns behind the 
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different positions of the samples in a PCA score plot. In the following we will summarise our recent 
research (Munck, 2005, 2003; Munck et al., 2004; Jacobsen et al., 2004) using unpublished 
examples. 
 
 
Materials and methods 
 
 Three data sets of endosperm mutant genotypes and normal barley controls (Munck et al., 2004) 
are introduced with spectroscopic and chemical analyses. The first data set (Figs 1-3, 5) consists of 
23 samples of 20 barley genotypes grown in the field in the year 2000. The lines are classified in Fig. 
2 as normal (N), protein mutants (P), which are 20-45% increased in lysine and moderately decreased 
in starch (5-10%), and carbohydrate mutants (C) low or very low in starch (10-40% less than the 
control) and with a moderate increase in lysine (5-10%). The P mutant Risø genotypes are the alleles 
lys3a (mutant1508), lys3b (mutant 18), lys3c (mutant 19) and lys4d (mutant 8). Mutant lys3m induced 
in Minerva originates from Carlsberg. Lysimax and Lysiba are starch and yield improved recombinants 
from crosses with lys3a and normal barley from Carlsberg. The C mutants are the Risø mutants, 
mutant 16 and lys5f (mutant 13) in Bomi and lys5g (mutant 29) in Carlsberg II. Mutants 95 and 449 
are in Perga of Italian origin.  w1 (line 1201) and w2 (line 841878) of unknown origin were imported to 
the Carlsberg collection assigned as waxy mutants. Only w2 was waxy (amylose 4.2%). The second 
data set (Fig. 4, Table 1) consists of four genotypes –Bomi and mutants lys5f, lys5g and lys3a grown 
in the field (from data set 1) and in the greenhouse. The third data set (Figs 6-8, Table 2 from Møller 
2004b) displays 15 barley lines grown in the field; the N (normal) lines Bomi, Minerva and Triumph, 
the P (protein) mutants lys3a, lys3m and the breeding lines between lys3a and normal barleys, 
Lysimax and Lysimax (positive seed quality selection) and the unselected lys3a breeding lines 
502,505,531,538 and 556. The chemical and Near Infrared Reflectance (NIR) spectral analysis (on 
milled flour 0.5 mm sieve) was carried out by a Foss-NIRSystems (USA) 6500 instrument as 
described by Munck et al., 2004. The raw spectra were multiplicative scatter corrected (MSC) and 
presented as log 1/R intensity. Chemometric pattern recognition analysis was performed using 
Principal Component Analysis (PCA) for classification and Partial Least Squares Regression (PLSR) 
for prediction according to Martens and Næs (1989).  
 
 
Recognising sample and genotype specific NIRS patterns in barley 
 
 The NIR spectra from the 23 barley seed samples from Material 1 in Fig. 1 depict 1400 wavelength 
variables with a seemingly narrow variation between samples in absorption value MSC log1/R. 
Classical statistics of variance based on distributional assumptions cannot extract information from a 
whole intercorrelated data matrix with thousands of wavelength variables per sample. For this 
purpose, there is a need for self-calibrating multivariate chemometric data models such as PCA for 
classification and PLSR for prediction, both based on latent variables. The PCA (PC1 to PC2) in Fig. 2 
classifies the spectra in Fig. 1 into three distinct populations: normal (N) barley, endosperm mutants 
with a high lysine percentage in protein (P) and carbohydrate mutants (C). The C barley lines such as 
Risø mutant 16, lys5g and lys5f, which are mutations in the AGP-ase mechanism, have been used by 
the biochemists to study starch synthesis. It was therefore surprising when we found (Munck et al., 
2004) that these mutants and three others –mutant 95, mutant 449 and the w1 (line 1201), all in the C 
cluster (Fig. 2)– compensated the loss in starch by overproducing β-glucan (BG). The mean BG value 
for the C (12.3%), P (3.7%) and N (4.7%) classes are marked in Fig. 2. Obviously, there is a strong 
pleiotropic regulative effect where mutations in starch metabolism may channel glucose from α- to β-
glucan production. Normally, PCA classifications, which are useful for an overview of large (spectral) 
data sets, are published in literature without inspecting the underlying data structure. We generated 
the mean spectra for the C, P and N genotypes and visually screened the whole spectra. Marked 
differences were found in the narrow area 2260-2360 nm (Fig. 3, marked "a" in Fig. 1) of chemical 
and genetic significance. The near infrared transmission (NIT) and reflectance (NIR) spectra 
represent in principle a physical-chemical fingerprint containing repetitive information on the 
propensity of chemical bonds. A trained spectroscopist can from the first, second or MSC derivatives 
of the log1/R NIRS data directly explore specific chemical differences between samples and deduce 
destructive analyses for verification. The P and C genotypes have a characteristic bulb in the area 
from 2336 to 2352 nm which in spectroscopic literature is assigned to cellulose (2336 and 2352 nm) 
and fat (2347 nm). 
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Fig. 1. MSC log 1/R NIRS Spectra 1100-

2500 nm of the 23 barley samples in 
Material 1. 
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Fig. 2. PCA score plot of the spectra in Fig. 1; 

see discussion in text. 
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Fig. 3. Mean spectra 2260-2360 nm of 

clusters N, P and C from the PCA in 
Fig 2. 
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Fig. 4. Differential NIRS mutant spectra 2260-

2360 nm of lys5f, lys5g, lys3a to Bomi 
grown in greenhouse (G) and field (F). 
Chemical composition in Table 1. 
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Table 1. Chemical composition (% d.m) of barley mutants and isogenic 
Bomi control grown in greenhouse (G) and field (F) shown as 
spectra in Fig. 4 

DM% 

 BG Starch Protein Amide A/P Fat 

Bomi_G N 6.8 48.8 14.6 0.38 16.2 1.7 
Bomi_F N 4.9 53.6 11.5 0.29 15.8 1.9 
3a_G P 3.6 41.6 16.6 0.29 10.9 3.5 
3a_F P 3.1 48.5 12.7 0.23 11.4 2.6 
5g_G C 13.5 44.7 16.1 0.39 15.1 2.3 
5g_F C 8.9 47.0 11.8 0.26 13.8 2.3 
5f_G C 20.0 30.5 15.7 0.37 14.7 3.7 
5f_F C 16.5 33.0 14.5 0.31 13.4 3.8 
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Fig. 5. Differential NIRS mutant spectra 

2260-2480 nm  to Bomi for lys3a, 
lys3b, Lysimax and Lysiba. 
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Fig. 6. PCA score plot for 15 barley visual-

NIRS spectra (400-2500 nm) MSC log 
1/R 400-2500nm demonstrating a case 
of "data breeding" discussed in text. 
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Fig. 7. PCA bi plot on the chemical 

composi-tion of 15 barley varieties 
displayed in Table 2. 
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Fig. 8. PLSR correlation plot for prediction of 

starch in the material in Table 2 by 
visual-NIRS as ordinate and the 
chemical starch analysis as abscissa. 
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Table 2. Chemical composition of the 6 normal and 9 lys3a genotypes presented in Figs 6, 7 and 8 

Normal Group 1 Group 2 Group 3 Group 4  

n = 6 Lysiba, Lysimax 502, 556 505, 531, 538 lys3a, lys3m 

Protein (P) 11.3 ± 0.4 11.7 ± 0.1 11.7 ± 0-1 12.6 ± 0.2 12.5 ± 0.2 
Amide (A) 0.28 ± 0.03 0.21 ± 0.007 0.21 ± 0.007 0.22 ± 0.02 0.23 
A/P 15.5 ± 0.9 11.0 ± 0.3 10.9 ± 0.4 10.7 ± 0.8 11.4 
Starch 54.6 ± 2.5 52.6 ± 0.5 50.0 ± 0.1 49.4 ± 1.5 48.7 ± 0.2 
β-glucan 4.7 ± 1.1 3.1 ± 0.1 3.1 ± 0.2 3.1 ± 0.3 2.8 ± 0.5 
Rest (100-P+S+BG) 29.5 ± 1.8 32.7 ± 0.5 35.3 ± 0.3 34.9 ± 1.8 36.1 ± 0.5 

 
 
 The substantial increases of the fat components anticipated from the spectral patterns of lys3a and 
lys5 barleys are verified by chemical analyses in Table 1. Further studies (Jacobsen et al., 2004; 
Munck, 2005) demonstrate that the spectral patterns do not only have a chemical interpretation, but 
also a genetic significance as a phenomenological trait expressing the whole active genome as a 
pattern of chemical bonds represented by the spectral phenome (Munck et al., 2004; Munck, 2005).  
 
 The reproducibility, fine-tuning and informative capacity of NIRS spectra are indeed impressive. 
The MSC log1/R absorption range is 0.04 units for classification of C, P and N barleys in Fig. 3. 
However, the range needed is 100 times less for classifying the C versus P+N groups in the 1890-
1920 nm area for dry matter (DM) content within the narrow response of 89-93% d.m. (Munck, 2005). 
A high BG content of the C group conditions a mean difference in DM of 1.5% between these groups. 
The precision of NIRS allows individual barley samples (genotypes) to be differentiated by their 
spectral patterns. This is demonstrated by the spectra in Fig. 4 with chemical evaluation shown in 
Table 1. Four samples representing three mutants lys3a, lys5f, lys5g and the normal control Bomi 
grown in the field are selected from Material 1 and compared with the corresponding genotypes 
grown in greenhouse. Figure 4 displays the differential spectra where the mutant spectra are 
subtracted from those of the Bomi control. A well-conserved genetic pattern is demonstrated in the 
spectral area 2260-2360 nm for the two different environments. There is some offset and a minor 
effect on the spectral form due to environment. Bomi is near isogenic for the lys3a and lys5f mutants. 
The differential spectrum to Bomi of these mutants constitutes a spectral representation of pleiotropy 
involving all expression effects of the mutant on the level of chemical bonds (Table 1) in the 
endosperm (Munck, 2005; Jacobsen et al., 2004). While protein alone has a low power in 
discriminating between the genotypes (Table 1), the amide-to-protein (A/P) index clearly separates 
the high-lysine P mutant lys3a from the others. On the other hand, the BG-compensated starch 
mutants (C) show a very high level of BG (16.5-20% DM in lys5f) when Bomi is 4.9-6.8 % DM and 
lys3a is reduced to 3.1-3.6%. There is a corresponding reduction in starch from 48.8-53.6% DM in 
Bomi down to 30.5-33.0 % DM in lys5f. It is thus the pleiotropic differences in expression of chemical 
composition between the mutants in Table 1 that explain the unique spectral patterns of the same 
samples displayed in Fig. 4. 
 
 
"Data breeding" for complex quality tr aits by NIRS selecting improved 
segregants from a PCA score plot 
 
 We will now test if an improvement in breeding for plump starch rich seeds in high-lysine lys3a 
barley at Carlsberg 1973-1988 can be followed by NIRS technology to be further exploited for other 
purposes in plant breeding. In the PCA score plot from Material 1, the improved lys3a genotypes 
Lysiba with starch (S 52.2%) and Lysimax (S 52.9%) are classified in between the original lys3a (S 
48.5%) mutant and the normal barley Triumph high in starch (S 58.5%), indicating a change in 
chemical composition. The differential spectra 2260 to 2360 nm to Bomi (S 53.5%) of the improved 
Lysiba and Lysimax genotypes and of the lys3a (BG 3.1%) and lys3c (BG 6.4%) allele are presented 
in Fig. 5. The spectral differences between the alleles lys3a and lys3b are mainly due to the difference 
in BG. The spectra from the starch-improved lys3a lines are moved downwards to the baseline and 
the mutant characteristics are flattened out. The area between the lys3a spectrum and the 
Lysiba/Lysimax recombinants marked by the arrow gives a spectral representation of 15 years of 
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breeding work to improve seed quality. Table 2 outlines the chemical composition (six variables) of 
material 3 with falling starch content from 54.6 to 48.7% consisting of: normal barley, improved lys3a 
breeding lines (group 1), unselected recombinants (groups 2 and 3) and original mutants (group 4). 
The PCA biplot in Fig. 7 gives a convenient overview of how the chemical analyses influence 
genotype classification that is comparable with the corresponding VIS-NIRS (400-2500 nm) PCA 
classification plot in Fig. 6. In the biplot in Fig. 7 the variable "Starch" is positioned near Triumph, 
indicating a high level of starch in this cultivar. The move in both PCA´s (Figs 6 and 7) of the Lysiba 
and Lysimax improved genotype from the position of the original low starch lys3a mutant towards the 
high-starch variety Triumph is clearly demonstrated in both PCA´s. The NIRS and chemical data sets 
are combined in the PLSR starch prediction plot in Fig. 8. This is how NIR and NIT spectroscopy are 
utilised today by plant breeders for chemical prediction. But because near infrared spectroscopy gives 
a total estimate of the chemical composition of a barley sample in a PCA score plot it is possible 
empirically, by comparison to a high-quality genotype, to evaluate and to select the whole expression 
of the genotype on the spectral level in a cross-breeding program by "data breeding". It is thus 
possible to represent a complex quality trait such as nutritional value (described here) or malt quality 
(Møller 2004a) as a whole by NIR and NIT spectroscopy. This can be done without chemical analysis, 
except for the evaluation of the final varieties. It is clear that NIR and NIT spectroscopy combined with 
PCA and PLSR data analysis (chemometrics) is a revolution in cost-effective breeding for quality. It 
reflects in a reproducible way the above-described changes in chemical composition down to 1-2 
percentage points of each component by PLSR and summarises by PCA and visual inspection of 
spectral intervals subtle differences in quality characteristics as a whole for each genotype and 
sample representing patterns of chemical bonds.  
 
 In genetics and plant breeding there is a need for a new multivariate way of thinking (Munck, 2005) 
in re-defining the biological individual, or zygote. Now the self-organising (endosperm) tissue can be 
considered as a response interface on the level of chemical bonds for the genome. It is, as 
demonstrated here, read as a pattern by spectroscopy, classified by multivariate analysis and 
interpreted by genetics, chemistry and technology. Classical genetic variance statistics is focused on 
individual genes and traits, assuming more or less free distribution. The current Quantitative Trait Loci 
(QTL) analysis aims at revealing complex genome-phenome-quality relationships. It combines trait 
and genome information and has until recently employed the traditional analysis of variance, despite 
the fact that variables in most gene, trait and quality complexes are strongly dependent on each other. 
This is why QTL analysis has such a mixed reputation. Using multivariate pattern recognition analysis 
PCA and PLSR can overcome this problem, as recently demonstrated by Bjørnstad et al. (2004) with 
PLSR. A new high-precision QTL analysis on the spectral phenome level for use by plant breeders 
will be possible when comparing (by PCA) and combining (by PLSR) NIRS data with RFLP data. It is 
likely that NIR and NIT fingerprinting is able to function as a stand-alone analysis, if genetically (by 
DNA), chemically and technologically defined controls are provided. 
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