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Abstract. Four cannulated ewes were used in a factorial (2 x 3) design to study the effect of two sources of

roughage (alfalfa hay vs ammonium-treated straw, UTS) and three levels of ground barley grain supplemen-

tation (F:C ratio: 100:0; 66:33; 33:66. respectively) on rumen digestibility, fermentation pattern and microbial

N yield. Diets were restricted to maintenance level (1.6 Mcal ME/d). Rumen (0.40 vs 0.34; P=0.07) and total

tract DM digestibility were higher (0.77 vs 0.68; P<0.001) when ewes were fed with alfalfa diets and digestibil-

ity increased linearly with concentrate supply (P<0.001). Alfalfa diets also promoted higher rumen ammonia

(31 vs 20 mg N-NH3/100ml; P=0.003) and VFA concentrations (144 vs 82 mmol/l; P<0.001). Among levels of

barley supply only the highest (F:C. 33:66) depressed significantly pH and acetate proportion (P=0.008).

Protozoa counts increased significantly (P<0.05) with moderated barley supplementation (3.2·105 vs 8.2·105

vs 7.6·105 cells/ml). The highest and the lowest duodenal N flow corresponded to un-supplemented alfalfa and

un-supplemented straw diets as a result of a significant (P<0.001) interaction (forage x supplementation).

Moreover, rumen microbial yield was maximal when animals received non-supplemented alfalfa (9.0, 12.1 and

8.0 g/d using 15N, purine bases (PB) and DNA sequences, respectively). Using specific DNA sequences it was

possible to distinguish between bacterial and protozoal N flow in duodenal digesta. Protozoal N in duodenal

digesta ranged between 2.4 and 8.3 % of total microbial flow and peaked at the highest level of grain supply

(F:C 33:66). However, the possibility for DNA degradation by gastric digestion could not be ruled out. Barley

supplementation promoted a linear decrease in microbial protein synthesis efficiency (g/kg OM digested in the

rumen) using PB and DNA as microbial markers (37 vs 27 vs 23; P<0.05).

Keywords. Rumen microbial – Yield-microbial markers – Purine bases – qPCR – DNA.

Effet de différent types de fourrage et d’orge sur la digestibilité, la fermentation ruminale et la production

d’azote microbien

Résumé. Quatre brebis portant une canule du rumen ont été utilisées dans une analyse factorielle (2x3) afin

d’étudier l’effet de 2 types de fourrage (luzerne vs paille traitée avec du NH3) et de 3 niveaux d’orge en grain

supplémentée (F:C 100:0; 66:33; 33:66.) sur la digestibilité ruminal et des paramètres de fermentation. Ces

deux régimes ont été limités au niveau d’entretien. La digestibilité de la matière sèche (DM) dans le rumen

et sur l’ensemble du tube digestive est supérieur dans les brebis nourries avec le régime à base de luzerne

et augmente linéairement avec l’apport du concentré. Les régimes de luzerne ont aussi produit des concen-

trations supérieures en ammonium et VFA. Entre les niveaux d’orge supplémentés, seulement le plus haut a

diminué significativement le pH et la proportion d’acétique. La population des protozoaires est significative-

ment élevée avec la supplementation modérée d’orge. Le plus haut et le plus bas apport de N et le flux duo-

dénal correspondent au régime de luzerne et de paille non supplémentés, respectivement, du fait d’un effet

significatif sur l’interaction (fourrage x suppléments). Le flux de N microbien à travers le rumen a été supé-

rieur si les animaux ont reçu du luzerne sans suppléments, du fait de la valorisation de MN avec l‘usage de

N, PB et ADN comme marqueurs microbiens et l’utilisation des bactéries associés à la phase liquide comme

référence. Néanmoins, lors de l’emploi des bactéries associées à des particules comme référence, les diffé-

rences n’ont pas été statistiquement significatives. En utilisant des séquences spécifiques d’ADN, il a été

possible de différencier les flux de N bactérien et de N protozoaire dans la digestion duodénal. Le N proto-



zoaire dans la digestion duodénal varie entre 2,4 et 8,3% du totale MN et arrive au maximum dans les

régimes de paille supplémentée, si l’on considère des bactéries associées à la phase liquide. Mais, une

dégradation de l’ADN ne peut être rejetée. En termes du rendement de synthèse de protéine microbienne

(g/kg de matière organique ruminal dégradée) il n’y a pas de différences importantes entre les valeurs des

différents marqueurs microbiens utilisés bien qu’entre les traitements, le majeur rendement a eu lieu lorsque

les animaux ont reçu de la luzerne comme le seul régime.

Mots-clés. Proteine microbienne – Marqueur microbien – Base purinique – q-PCR – ADN.

I – Introduction

In the Mediterranean region, scarcity of roughage combined with the increase in demand for live-

stock production has driven ruminant production toward increasingly intensive feeding systems

whose optimisation represents an important challenge for ruminant nutrition studies. Grain has

replaced roughage as the main source of fermentable carbohydrates in order to improve pro-

duction efficiency. However, the feeding of concentrate rations may lead to gastric dysfunction,

such as acidosis, where the microbiota specialized in the fermentation of fibre is transformed into

a microbial ecosystem adapted for fermentation of non-structural carbohydrates (NSC). In theo-

ry, dietary energy is used more efficiently with NSC-diets; feeding starch increases propionate

production and reduces the maintenance cost of rumen microbial populations (Czerkawski,

1978). However, the effect of NSC-based diets on both, microbial yield and efficiency is not yet

clear. Uncertainties are due mainly to the inability to quantify accurately microbial protein yield in

the rumen. The variability of the estimation of microbial synthesis using different microbial mark-

ers and their ability to discriminate between microbial and non-microbial N flow in the chymus,

may be regarded as the most critical aspect to this study.

The aim of the present study was to analyse the effect of the different grain supplements on two

basal diets (alfalfa hay or urea-treated barley straw, UTS) on rumen microbial yield estimated

using purine bases (PB) and specific DNA sequences (DS) as internal markers and 15N as an

external microbial marker. Rumen fermentation patterns and digestibility were also studied.

II – Materials and methods

Four adult, dry, non-pregnant Rasa Aragonesa ewes (48 SD 6 kg live weight) with surgically

implanted ruminal and duodenal cannulas were undergone successively to six 15 day periods.

During each period individual animals were randomly allocated one diet following a factorial (2x3)

design; two types of roughage (alfalfa hay vs urea treated straw, UTS) and three levels of ground

barley grain supply (F:C ratio: 100:0; 66:33; 33:66. respectively) were studied. To avoid carry

over effects between roughages, animals were fed initially with diets based on alfalfa hay (peri-

ods 1, 2 and 3) and then with UTS diets (periods 4, 5 and 6). Animals were handled according

to the EU criteria for care and use of animals in research and the experimental protocols were

approved by the Ethical Committee of the University of Zaragoza (Ref. PI13/05).

Diets were formulated to fulfil maintenance requirements (1.01 Mcal ME/Kg LW0.75, AFRC. 1993).

After seven days of adaptation to the diet, animals were placed in metabolic cages equipped with

automatic feeders and free access to fresh water. On the day prior to be used, barley straw was

watered with urea 0.4 l/kg fresh matter at 7.5% w/v. Complete diets were offered in eight daily

meals and intake and total tract digestibility were recorded during the following five days. From

day 9, Cr-EDTA (208 mg/d) and 15N (1.6 mg/g N ingested) were continuously infused in the

rumen and used as liquid-flow and microbial markers respectively. After four days of infusion,
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nine duodenal digesta samples (~50 g) were taken (every two hours starting at 8 h am) during

days 13 and 14. Homogenized duodenal samples were immediately frozen at –20ºC, pooled and

freeze-dried and used to determine rumen degradability and microbial yield, while a subsample

(~0.3 g) was frozen in liquid-N for DNA extraction. The last day (15 d) rumen content was sam-

pled at 0, 1 and 3 hours after feeding and used to describe the fermentation pattern. Rumen con-

tents (500 g) were filtered through two layers of cheesecloth; the filtrate was subsampled to

measure ammonia, volatile fatty acids (VFA) and to determine protozoal numbers. The rest of the

rumen fluid was divided into two fractions, to isolate liquid-associated bacteria (LAB) and proto-

zoa (LAP) following Pérez et al. (1995) and Sylvester et al. (2004) procedures, respectively. Mi -

crobial extracts were frozen and freeze-dried for storage.

Dry matter (DM) content in both feed and faeces was determined by drying samples (105ºC) to

a constant weight and organic matter (OM) by combustion at 550ºC for 8 h in a muffle furnace.

NDF and ADF concentrations were determined by the procedures proposed by Van Soest et al.

(1991). Total N in food, refusals and microbial extracts was determined by the Kjeldahl method

using Selenium as a catalyst. Non-ammonia N (NAN) in duodenal digesta was determined after

removing the ammonia (Firkins et al., 1992). NH3-N concentration in rumen fluid was estimated

following the colorimetric procedure proposed by Chaney and Marbach (1962). Volatile fatty acid

(VFA) concentration in deproteinised rumen fluid was determined by gas liquid chromatography

(Jouany and Senaud, 1982). Alkanes, used as a solid-associated flow marker, were extracted

from diet, refusal and duodenal samples (Mayes et al., 1988) and were analysed as described

by Valiente et al. (2003). PB in digesta and microbes extracts was determined using the method

proposed by Balcells et al. (1992) with the modification proposed by Martín-Orúe et al. (1996).

The isotope abundance of 15N was quantified using a mass spectrophotometer (VG PRISM II.

IRMS, Carlo Erba. Milan, Italy). Protozoal cells were microscopically counted (Dehority, 1993)

using Lee et al. (1985) classification protocol.

DNA was extracted in duplicate from frozen samples using the QIAamp® DNA Stool Mini Kit

(Qiagen Ltd. Carwley, West Sussex, UK) following the manufacturer’s instructions. Bacterial and

protozoal DS concentration was determined in duodenal samples by a quantitative PCR follow-

ing the protocols described by Maeda et al. (2003) and Sylvester et al. (2004) respectively. Ex -

tracted DNA (2 µl) was added to amplification reaction (25 µl total volume) containing 25 pmol of

each primer, 12.5 µl of Platinum® SYBR® Green qPCR SuperMix-UDG and 0.5 µl of ROX Re -

ference Dye (InvitrogenTM). Cycling conditions for bacterial DS quantification were 95ºC for 10

min followed by 30 cycles of 95ºC for 15 s, 61ºC for 30 s and 72ºC for 30 s, while for protozoal

DS quantification the annealing temperature was 55ºC for 20 s. DNA sequence concentration in

bacterial and protozoal extracts was assessed with a spectrophotometer, corrected in respect to

their cross contamination and finally used as standard for the qPCR quantification of the bacter-

ial and protozoal DS in duodenal samples respectively.

Post-ruminal flows were estimated using the double-marker method (Faichney, 1975) assuming

a complete recovery of Cr-EDTA and dietary C31 in the duodenum (Keli et al., 2008). The micro-

bial N (MN) contribution to abomasal NAN was estimated from 15N enrichment PB/N ratio and

DS/N ratio in duodenal digesta and microbial extracts.

Data were analyzed by ANOVA as a 2x3 factorial design considering two forages (alfalfa hay vs

UTS) and three supplementation levels (F:C ratio: 100:0; 66:33; 33:66) as fixed factors and ani-

mals as block. All analyses were made using the GLM procedure in the SAS statistical package,

version 8.01 (2000) and the least significant difference test was used for comparing means.

Differences among means with P<0.05 were accepted as statistically significant and those with

0.05<P<0.10 as statistical tendencies.
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III – Results and discussion

All sheep remained in good health throughout the experiment; diets were accepted and animals

remained at a similar intake level (414 g digestible OM/d). Refusals were always less than 10%

of offered diet, with the exception of the sheep receiving non-supplemented treated-straw (274 g

digestible OM/d).

Treatment of straw improved its crude protein content (from 3.6% to 11.9%) and digestibility

(Fondevila and Dehority, 1994), however, the improvement was not sufficient to reach the nutri-

tional quality of forage such as alfalfa hay. Therefore, sheep eating alfalfa showed a higher total

tract digestibility of OM (79% vs 69%, P<0.001), NDF (66% vs 59%, P=0.055) and ADF (66% vs

53%, P=0.002), although these differences between forages did not reach the statistical signifi-

cance in terms of rumen degradability due to the high variability inherent in the estimation pro-

cedure. Ground barley grain is an easily fermentable carbohydrate source for rumen microbes

and caused a linear increment in rumen OM degradability (40% vs 51% vs 56%, P=0.003) and

total tract digestibility (66% vs 74% vs 81%, P<0.001).

Barley supplementation and type of forage caused changes in the fermentation pattern (Table 1).

There was a direct relationship between digestible OM intake and the rumen VFA concentration;

while the relationship was opposite with rumen pH. These differences explain the greater VFA con-

centration (144 mM vs 82 mM, P<0.001) and lower pH (6.23 vs 6.47, P=0.067) observed in alfal-

fa compared to UTS diets. Rumen pH (6.58 vs 6.42 vs 6.05, P=0.008) and acetate proportion

(77% vs 75% vs 70%, P<0.001) reduced linearly with respect to barley supplementation whilst

butyrate proportion (5.2% vs 8.0% vs 9.2%, P<0.001) increased. Several authors (Jaakkola and

Huhtanen, 1993; Koenig et al., 2000) suggested that the increase in butyrate would be related to

the increase in protozoal and their tropism for the starch sources and our findings seem to con-

firm this hypothesis (3·105 vs 8·105 vs 8·105 cells/ml, P=0.042 for 0, 33 and 66% supplementa-

tion). Type of forage did not alter protozoa counts but it did modify the structure of the protozoal

community (Harrison and McAllan, 1980). Alfalfa supplementation reduced small protozoa num-

bers (Entodinium, P<0.001) but significantly increased the abundance of larger protozoa, such as

Diplodinium, Ophryoscolex, Isotricha and Dasytricha. A greater proteolytic/predation capability of

Dasytricha compared to Entodinium has recently been investigated (de la Fuente et al., 2009).

High proteolytic activity and N turnover in the rumen under alfalfa diets would explain the greater

rumen ammonia-N concentration (31 mg/dL vs 20 mg/dl, P=0.003) and specific microbial end-

products (iso-butyrate, valerate and iso-valerate) of amino-acid degradation in these diets.

Post-ruminal NAN flow reflected N intake and was higher when animals were fed with alfalfa than

with UTS (13.53 g/d vs 9.1 g/d, P<0.001, Table 2) representing on average 88 SD 2.6% of the N

ingested. Animals fed with alfalfa hay showed an apparently higher yield of rumen microbial N,

although differences only reach statistical significance when data were estimated using PB as

microbial marker (8.6 g/d vs 6.13g/d for alfalfa and UTS diets, P=0.015). The effect of barley sup-

plementation on rumen microbial yield was influenced by the type of roughage. Microbial produc-

tion was at its highest when alfalfa was provided as the whole diet, however, microbial production

decreased with barley supplementation (Table 2). This effect was consistent and independent of

the microbial marker used. The rumen microbial population in the animals fed with UTS showed

a different behaviour and supplementation with barley improved the microbial N flow, either lin-

early in those values derived from 15N, or quadratically when PB or DS were used as microbial

markers; in both cases the optimum level was reached at 33% of barley supplementation.

Theoretically, alfalfa hay, as most of the leguminous roughages, has a limited amount of rumen

fermentable energy in relation to its protein content. Thus, microbial yield in alfalfa diets should

be increased with a fermentable energy supplement (i.e. barley grain). However, our data did not

support this hypothesis and the change in fermentation conditions with barley supplementation
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Table 1. Effect of forage type and barley supplementation on digestibility and rumen fermentation

Forage Alfalfa hay Treated-Straw† S.E.M Signification

Barley Supply 0% 33% 66% 0% 33% 66% n=4 Forage Supply F x S

Intake (g/d)

OM 636a 474b 460b 452b 577a 586a 30.6 0.559 0.762 <0.001

Apparent digestibility (%)

OM 72 79 86 61 69 77 2.69 <0.001 <0.001 0.947

NDF 64 64 72 60 59 57 4.28 0.055 0.734 0.377

ADF 64 65 70 55 54 49 4.53 0.002 0.985 0.417

Rumen apparent digestibility (%)

OM 40 55 57 41 46 54 2.13 0.247 0.003 0.409

N 15 22 1.9 13 17 5.9 6.24 0.840 0.071 0.767

Rumen fermentation

pH 6.37 6.29 6.02 6.78 6.54 6.07 0.15 0.067 0.008 0.477

N-NH3(mg/100 ml) 30 33 31 19 24 16 3.92 0.003 0.374 0.742

Total VFA (mmol/l) 137 148 147 70 94 81 15.9 <0.001 0.558 0.907

Proportion (%)

Acetate 75ab 74ab 72bc 79a 75ab 68c 1.66 0.912 0.004 0.047

Propionate 17 14 17 16 16 20 1.49 0.235 0.154 0.345

Butyrate 5.7cd 8.8ab 8.1b 4.7d 7.3bc 10a 0.63 0.822 <0.001 0.025

Iso-butyrate 0.9 0.9 0.8 0.1 0.3 0.4 0.10 <0.001 0.608 0.113

Valerate 1.1a 0.9ab 1.1a 0.2c 0.6b 0.9ab 0.16 <0.001 0.038 0.032

Iso-valerate 0.9 0.9 0.7 0.4 0.6 0.9 0.12 0.067 0.365 0.064

Protozoal cells (x105/ml) 3.8 10 5.6 2.6 6.5 9.7 1.94 0.911 0.042 0.170

Proportion (%)

Entodinium 86 86 83 97 94 96 2.53 <0.001 0.681 0.542

Diplodinium 1.7 1.9 1.9 0.6 1.2 0.6 0.63 0.067 0.867 0.906

Ophryoscolex 1.6 3.5 6.1 0.2 0.4 1.0 1.16 0.004 0.105 0.310

Isotricha 2.4 2.3 2.1 0.1 0.9 0.4 0.45 <0.001 0.628 0.662

Dashytricha 8.2 6.2 7.4 1.9 3.5 1.7 1.18 <0.001 0.911 0.310

Means in a row with unlike superscripts are significantly different (interaction F x S; P<0.05).
† Barley straw treated with 35g urea / kg DM.



seems to lead to a negative effect, either limiting rumen microbial growth or alternatively by

reducing the efficiency of microbial turnover. Conversely, animals fed with UTS diet showed a

higher microbial protein yield when they were supplemented with barley and this improvement

peaked with moderate levels of supplementation (F:C ratio 67:33).

Critical to the present study was the precision of microbial marker used; 15N of PB provided con-

sistent and similar measurements of microbial yield, not only in absolute terms but also describ-

ing the differences between the experimental treatments. The slight overestimation associated

with PB has been conventionally attributed to the presence of non-microbial purines arising either

from endogenous secretions (González-Ronquillo et al., 2003) or from dietary PB that are able

to by-pass rumen fermentation (Askar et al., 2005). Specific DS enables the discrimination of

microbial species in the chymus (Bergen, 2004) and furthermore can quantify the contribution of

non-bacterial species to the host digestive system (Sylvester et al., 2004). However, estimates of

rumen microbial yield derived from DS were much lower (average 4.0 g MN/d) than those

obtained with conventional markers (average 7.0 and 7.4 for 15N and PB). Such an underesti-

mation might be attributed to DS degradation through abomasal digestion. Belanche et al. (2010)

demonstrated in an in vitro simulation that protozoa-DS were sensitive to gastric digestion

(around 25% of specific protozoa-DS were digested), nevertheless this author reported that most

of the specific bacterial-DS (up to 90%) were able to maintain their molecular integrity through-

out gastric digestion. In this case, further research would be necessary. If a fraction of protozoa-

DS is digested during the gastric transit, then absolute measurements of rumen protozoa yield

based on DS persistence would be underestimated. However, the results presented in this study

provide some evidence of the relative measures among treatments. No differences were detect-

ed between roughage sources in the protozoa-N flow but, in relation to grain supply, the effect

was similar to the total MN yield, decreasing in alfalfa and improving in UTS diets (Interaction

Forage x Supplementation, P<0.05). However, in relative terms the protozoal N contribution to

total MN was significant and increased linearly with barley supplementation (2.5% vs 3.8% vs

6.5%, P<0.05) reflecting the abundance observed in rumen liquor (Table 1).

In terms of efficiency of microbial protein synthesis (gMN/kg OM apparently digested in the ru men

– OMDR), no differences were observed between forages (Table 2). At maintenance level, the effi-

ciency was similar regardless of the origin of the digestible OM (high or poor quality roughages)

and even the type of N source (mainly protein-N in alfalfa hay vs mainly NAN in UTS). These

observations fit perfectly with the AFRC (1993) principle based on the metabolizable energy in -

gestion, although it did not agree with the theory that proposes there are differences in the micro-

bial N yield efficiency depending of the N source. Some amino-acids and peptides are consid-

ered as growing factors for rumen microorganisms (Maeng et al., 1976) and most authors agree

that rumen microorganisms have some requirement for protein-N (Nocek and Russell, 1988).

However, our data suggest that these requirements can be provided by microbial N recycling

when animals are fed at maintenance level.

Regardless of the type of forage used, increasing the proportion of easily fermentable carbohy-

drates (i.e. ground barley grain) in the diet led to a progressive decrease of the microbial synthe-

sis efficiency, an effect that was shown as statistically significant when PB (P=0.012) and DS

(P=0.04) were used as microbial markers. Low efficiencies of microbial synthesis associated with

concentrated diets have been widely described (Askar et al., 2008). However, it remains unclear

whether this could be attributed to higher digestible OM intake or to the reduction of the normal

rate of microbial protein synthesis. In describing this effect, several terms like "overflow metabo-

lism", "slip reactions", "uncoupling" and "energy spilling" have been used to explain the hypothet-

ical energy dissipation caused by futile cycles of potassium, ammonium, or protons through the

cell membrane when they are fed with a high concentrate diets (Van Kessel and Russell, 1996).
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Table 2. Effect of forage type and barley supplementation on microbial N flow and efficiency of microbial synthesis estimated with different

microbial markers

Forage Alfalfa hay Treated-Straw† S.E.M Signification

Barley Supply 0% 33% 66% 0% 33% 66% n=4 Forage Supply F x S

Intake N (g/d) 22a 14b 11c 9.0c 11c 11c 0.75 <0.001 <0.001 <0.001

Duodenal flow (g/d)

Non-ammonia N 18.9a 10.8b 10.9b 7.8c 9.2bc 10.3bc 1.00 <0.001 0.011 <0.001

Microbial-N flow††

15N 9.0a 5.8bc 6.4abc 5.1c 6.8abc 8.7ab 1.00 0.811 0.445 0.017

PB 12.1a 8.0b 5.6b 5.4b 7.1b 5.9b 1.08 0.015 0.043 0.012

DS 8.0a 3.0b 2.9b 2.5b 5.3ab 2.1b 1.27 0.219 0.128 0.025

DS-Bacterial 7.8a 2.9b 2.8b 2.4b 5.1ab 1.9b 1.26 0.208 0.120 0.027

DS-Protozoal 0.16ab 0.08b 0.09ab 0.07b 0.15ab 0.18a 1.03 0.380 0.702 0.041

EMS (g MN/kg OMDR)
15N 36 23 24 30 27 28 5.2 0.844 0.282 0.569

PB 48 30 22 32 28 19 5.7 0.159 0.012 0.395

DS 32 11 11 14 20 7 4.9 0.284 0.040 0.049

Abreviations: purine bases (PB), DNA sequences (DS), efficiency of microbial synthesis (EMS), microbial-N( (MN),OM apparently digested in the rumen (OMDR).

Means in a row with unlike superscripts are different (interaction F x S; P<0.05).
† Barley straw treated with 35g urea / kg DM.

†† Microbial-N flow was determined considering liquid-associated bacteria or protozoa as microbial reference extracts.



IV – Conclusions

The effect of barley supplementation on microbial N yield (g MN/d) was affected by type of roug -

hage. Supplementation increased the microbial protein yield using low-quality roughages (i.e.

ammonium treated straw), whereas the opposite effect was true when animals were fed with high-

quality roughages (i.e. alfalfa hay). Efficiency of microbial protein synthesis (g MN/ Kg OMDR) was

reduced when roughage was replaced by concentrate as digestible carbohydrate source.
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