

Somatic embryogenesis and organogenesis in citrus for sanitatio and in vitro conservation

Carimi F.

in

D'Onghia A.M. (ed.), Menini U. (ed.), Martelli G.P. (ed.). Improvement of the citrus sector by the setting up of the common conservation strategies for the free exchange of healthy citrus genetic resources

Bari : CIHEAM Options Méditerranéennes : Série B. Etudes et Recherches; n. 33

2001 pages 115-128

Article available on line / Article disponible en ligne à l'adresse :

http://om.ciheam.org/article.php?IDPDF=2001701

To cite this article / Pour citer cet article

Carimi F. Somatic embryogenesis and organogenesis in citrus for sanitatio and in vitro conservation. In : D'Onghia A.M. (ed.), Menini U. (ed.), Martelli G.P. (ed.). *Improvement of the citrus sector by the setting up of the common conservation strategies for the free exchange of healthy citrus genetic resources*. Bari : CIHEAM, 2001. p. 115-128 (Options Méditerranéennes : Série B. Etudes et Recherches; n. 33)

http://www.ciheam.org/ http://om.ciheam.org/

Somatic embryogenesis and organogenesis in Citrus for sanitation and *in vitro* conservation

F. Carimi,

Consiglio Nazionale delle Ricerche Istituto di Ricerca per la Genetica degli Agrumi, Palermo - Italy

1. Procedures for *in vitro* sanitation of citrus germplasm

The main factors influencing somatic embryogenesis are the genotype, the composition of the culture medium, the type and developmental stage of the explant.

Generally, explants from tissues in juvenile phase of development are more inclined towards embryogenesis than those from mature tissues. Many citrus genotypes have been regenerated by somatic embryogenesis from explants derived from different plant tissues; nevertheless, there are considerable differences in the somatic embryogenic potential of them. Since many *citrus* are polyembryonic, and adventive embryos are generated *in vivo* from the nucellar tissue, several studies on somatic embryogenesis have involved this tissue. Mitra and Chaturvedi (1972) have reported a direct correlation between the degree of polyembryony *in vivo* and the attitude to regenerate somatic embryos *in vitro*.

Somatic embryogenesis, from ovular tissues or embryos developed from ovules, has been extensively investigated in *Citrus*. Maheshwari and Rangaswamy (1958) first reported the regeneration *in vitro* of embryos from the culture of the nucellus; many subsequent improvements in the development of efficient protocols for the regeneration of somatic embryos have been reported after this observation. The regeneration of somatic embryos has been obtained from excised nucelli (Rangan *et al.*, 1968), abortive ovules (Bitters *et al.*, 1970), unfertilized ovules (Button and Bornman, 1971), undeveloped ovules (Starrantino and Russo, 1980; Moore, 1985), and isolated nucellar embryos (Litz *et al.*, 1985). Only few reports concern somatic embryogenesis from somatic tissue neither nucellar nor ovular in origin.

Hidaka et al. (1981) regenerated diploid plants from anthers of sour orange. Nito and Iwamasa (1990) obtained somatic embryos from cultures derived from satsuma juice vesicles, and Carimi et al. (1994, 1995) induced the formation of embryogenic cultures from stigmas and styles of lemon, grapefruit, mandarin, sour orange and sweet orange. Gill et al. (1995) obtained somatic embryos from epicotyl, cotyledon, leaf and root segments of in vitro grown nucellar seedlings of mandarin. Recent studies have indicated the embryogenic potential in six different citrus species from cultures of pistil transverse thin cell layer explants (Carimi et al., 1999). Unfortunately the results in terms of somatic embryo induction from nucellar tissues are very low in monoembryonic citrus genotypes. Rangan et al. (1968) first reported the direct induction of somatic embryos from nucellus of fertilized ovules of monoembryonic Citrus. Button and Kochba (1977), Kobayashi et al. (1981) and Kobayashi et al. (1982) reported that somatic embryogenesis from unfertilized ovules of monoembryonic genotypes were unsuccessful. Carimi et al. (1999) observed that stigma and style transverse thin cell layer explants could optimize the regeneration of somatic embryos in a monoembryonic species as citron.

High concentrations (50 g/L) of sucrose are usually used to induce the formation of embryogenic callus. In some cases it was observed that the omission of sucrose from the culture medium for a single culture passage greatly stimulated embryogenesis when the following subculture was performed in presence of sucrose (Kochba and Button, 1974). An important plant growth regulator for the regeneration of citrus somatic embryos is the cytokinin BA. The use of 13.3 μ M BA stimulated the embryogenic response of stigmas and styles (De Pasquale *et al.*, 1994), while Moore (1985) found that levels of BA higher than 0.44 μ M repressed embryogenesis in ovules. In some cases the presence of BA in the culture medium is not necessary to induce the formation of somatic embryos; Starrantino and Russo (1980) obtained somatic embryogenesis from undeveloped ovule of *Citrus* cultured on Murashige and Skoog medium (MS) (1962) supplemented with malt extract (0.5 g/L). Usually, the embryogenic calluses of *Citrus* can maintain their embryogenic competence for long periods (5-10 years).

Since somatic embryogenesis can be used to eliminate many virus diseases (Bitters *et al.*, 1970; D'Onghia *et al.*, 1997; D'Onghia *et al.*, 2001), the plant material obtained by somatic embryos regenerated *in vitro* can be used to establish healthy citrus stocks. Somatic embryogenesis from stigma and style culture represents a very recent technique for *Citrus* sanitation; this technique proved to be highly effective in the complete elimination of psorosis, tristeza, infectious variegation, concave gum, impietratura, cristacortis, exocortis and

cachexia (D'Onghia *et al.,* 2000). Moreover, as the international demand for *Citrus* is high, the *in vitro* conservation of plant material regenerated by somatic embryogenesis is very promising for the establishment of the safe international exchange of citrus germplasm (D'Onghia *et al.,* 2000).

Protocol for regeneration of somatic embryos from citrus stigma and style culture

Flowers are collected before opening and surface-sterilized by immersion for 5 min in ethanol (70% v/v in water), 15 min in 2% (w/v in water) sodium hypochlorite, followed by one 5-min rinse in sterile distilled. Stigma/style explants are excised with a scalpel, and placed vertically onto the media with the cut surface in contact with the medium. Explants were maintained on a Murashige and Skoog (1962) semisolid medium (7 g l^{-1} agar, type M Sigma A-4800) with sucrose (146 mM) as the carbon source. Three different media are used based on the nutrients and vitamins of MS medium supplemented with 500 mg l⁻¹ Malt Extract (ME) (Sigma M-0383) and 13.3 μM BAP (Sigma B-3274). Growth regulators are added to the medium and the pH is adjusted to 5.7±0.1 with 0.5 M KOH before autoclaving at 121 °C and 1.1 Kg cm⁻² for 15 min. Plastic Petri dishes (100 x 15 mm) are filled with 25 ml of medium and sealed with Parafilm M. Explants and calluses are subcultured at 30-day intervals and maintained in a growth chamber at 25+1 °C with a 16 h photoperiod, and a photosynthetic photon flux of 100 μ mol m⁻² s⁻¹ provided by Osram coolwhite 18 W fluorescent lamps. Individual somatic embryos (about 2 mm in diameter) are isolated and germination is attempted in test tubes (1 embryo per 155 x 23 mm glass tube sealed with Parafilm M) containing 20 ml of MS basal solid (7 g l^{-1} agar) medium supplemented with 146 mM sucrose and 500 mg l^{-1} ME. When plantlets are 5-7 cm length, they are washed in distilled sterile water and planted into autoclaved plastic pots containing a 1:1 (v/v)mixture of peat-moss:sand. Plantlets are maintained for 1-2 months under 95±5% relative humidity in a climate chamber at the same temperature and light conditions as above described. Later, plantlets are transferred to the greenhouse.

2. Procedures for *in vitro* conservation of healthy germplasm

There have been many reports on organogenesis from different type of explants of *Citrus* and citrus rootstocks. The morphogenic responses of *Citrus* cultured *in vitro* are influenced by genotype, explant type and culture medium. Explants have included shoot tip (Barlass and Skene, 1986), stem sections (Grinblat, 1972; Chaturvedi and Mitra, 1974; Raj Bhansali and Arya,

1979; Barlass and Skene, 1982), root sections (Sauton *et al.*, 1982; Burger and Hackett, 1986; Sim *et al.*, 1989; Bhat *et al.*, 1992), leaf sections (Chaturvedi and Mitra, 1974, Hu and Kong, 1987), stem internode (Duran-Vila and Navarro, 1989), epicotyl segments (Edriss and Burger, 1984) and transverse thin cell layer (tTCL) explants excised from stem internodes (Van Le *et al.*, 1999). The regeneration of adventitious shoots has been obtained either directly from the explant or from an intermediate callus phase. The regeneration of *Citrus* and related species by organogenesis has been described in many reports (Table 1). Only the references of the last twenty years will be given here; the reader may refer to the work of Skirvin (1981) and Barlass and Skene (1986) for previous references.

Marin and Duran-Vila (1991) proposed a micropropagation protocol for the conservation of citrus germplasm *in vitro*. This method was based on establishment of primary cultures to recover *in vitro* plants from nodal stem segments (dissected from 1-2 years old plants) and the maintenance of successive cycles of secondary cultures with the recovery of rooted plantlets in each subculture cycle. The subculture cycle would last 8-12 months and would include several operations (culture of nodal segments, rooting of shoots and elongation of rooted shoots). This protocol allowed the long-term maintenance of lemon, Mexican lime, sweet orange and trifoliate orange; the plants regenerated *in vitro* can be maintained for up to 12 months on the same medium before subculture to fresh medium (Marin and Duran-Vila, 1991).

Recently, Van Le et al. (1999) have reported a new efficient regeneration method leading to a high frequency of plant regeneration by using transverse thin cell layer (tTCL) explants excised from the stem internodes of 1-year-old trifoliate orange (P. trifoliata). The Authors found that the optimal combination of growth regulators for shoot regeneration was obtained with MS medium supplemented with 10 µM BA and 1 µM N-phenyl-N'-1,2,3thidiazol-5ylurea (thidiazuron, TDZ), leading to 90% of responsive tTCL forming on average 37 buds per tTCL. The highest percentage (100%) of shoot elongation was obtained onto MS medium supplemented with 1 µM gibberellic acid (GA₃), 60% of shoots formed roots on MS medium containing $5 \,\mu\text{M}\,\alpha$ -naphthaleneacetic acid (NAA) and 100% of these plants survived. The plants regenerated from tTCL had no morphological alterations; this could be due to the direct regeneration of plants from the explant without an intermediate callus phase and therefore the reduction of somaclonal variation (Van Le et al., 1999). The Author's opinion related to the high efficiency of bud formation is that in tTCL the transport of nutrients and growth regulators from the medium to the cells of the explant is faster. Moreover, a higher quota of responsive cells can be directly exposed to the medium (Van Le et al., 1999).

Species	Common name	Explant	Medium & PGR for callus formation	Medium & PGR for Shoot formation	Medium & PGR for Root formation	Reference
C. acida	Wild orange	Epicotyl	MS + 4.5 µM BA	MS + 4.5 µM BA + 5.8 µM GA ₃	MS + 5.4 μM NAA	Chakravarty & Goswami, 1999
C. assamensis	vind orange	Shoot tips		$MS + 2.2 \mu M BA$	Soilrite	Baruah <i>et al.</i> , 1996a-b
C. aurantifolia	Mexican lime	Nodal stem segments		MS + 0.4 µM BA	MS + 16.1 µM NAA	Duran-Vila et al., 1989
C. aurantifolia	Mexican lime	Internodal stem segments		MS + 33.3 μM BA + 5.4 μM NAA	½ MS + 2.7 μM NAA	Pérez-Molphe-Balch & Ochoa- Alejo (1997)
C. aurantium	Sour orange	Internodal seedlings stem sections		MT + 22 μM BA + 5.4 μM NAA	$^{1\!\!/_2}\text{MT}$ + 5.4 $\mu\text{M}\text{NAA}$	Moore, 1986
C. aurantium	Sour orange	Mature embryos	MT + 9 μM 2,4-D + 22.2 μM BA	MT + 44.4 µM BA + 5.4 µM NAA	MT + 5.4 μM NAA	Beloualy, 1991
C. grandis	Pummelo	Epicotyl segments		MS + 2.2 µM BA	MS + 2.5 μM IBA	Goh et al., 1995
C. grandis	Pummelo	Root segments		MS + 0.089 µM BA	MS + 2.5 μM IBA	Goh et al., 1995
C. grandis	Pommelo	Shoot-tip		MS + 1.8 µM BA	½ MS + 5.4 μM NAA	Paudyal & Haq, 2000
C. halimii		Hypocotyl segments		MS + 4.4 µM BA	MS + 2.7 μM NAA	Normah et al., 1997
C. indica				MS + 2.2 µM BA	Soilrite	Baruah et al., 1996a-b
C. jambhiri		Stem and root segments	MS + 0.9 µM KIN + 53.7 µM NAA	¹ / ₂ MS + 22.2 μM BA	½ MS + 5.4 μM NAA	Raman et al., 1992
C. latipes		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		MS + 2.2 μM BA	Soilrite	Baruah et al., 1996a-b
C. limon	Lemon	Stem and root segments	MS + 0.9 μM KIN + 53.7 μM NAA	½ MS + 22.2 μM BA	½ MS + 5.4 μM NAA	Raman et al., 1992
C. limon	Lemon	Shoot tips		MS + 4.4 μM BA + 4.6 μM KIN + 2.7 μM NAA	MS + 1.1 μM BA + 2.7 μM NAA + 2.5 μM IBA	Sing et al., 1994
C. limon	Lemon	Shoot-tip and node		DKW + 0.76 µM ABA + 8.87 µM BA	DKW + 19.6 µM IBA	Kotsias & Roussos, 2001
C. limon x P. trifoliata	Citremon	Stem segments		MS + 2.2 μM BA + 2.7 μM NAA	MS + 0.8 µM NAA	Mas et al., 1992
C. limonia	Rangpur lime	Nodal and internodal stem segments		MS + 10 μM BA	W + 10 μM NAA	Barlass and Skene, 1982
C. medica	Citron	Nodal stem segments		MS + 4.4 µM BA	MS + 16.1 µM NAA	Duran-Vila et al., 1989
C. mitis	Calamondin	Epicotyl, shoot tip and nodal stem segments		MS + 2.2-4.4 μM BA	½ MS + 4.9 μM IBA	Sim et al., 1989
C. mitis	Calamondin	From root of whole seedlings		MS + 2.2 µM BA	½ MS + 4.9 μM IBA	Sim et al., 1989
C. mitis	Calamondin	Leaf from seedlings (whole or segments)		MS + 8.9 μM BA	½ MS + 4.9 μM IBA	Sim et al., 1989
C. paradisi x P. trifoliata	Swingle citrumelo	Epicotyl stem segments		MT + 150 µM Cumarin	MT + 150 µM Cumarin	Grosser and Chandler, 1986
C. reshni	Cleopatra mandarin	Internodal seedlings stem sections		MT + 22 μM BA + 5.4 μM NAA	$^{1\!\!/_2}MT$ + 5.4 μM NAA	Moore, 1986
C. reticulata	Mandarin	Shoot tips		MS + 4.4 μM BA + 4.6 μM KIN + 2.7 μM NAA	MS + 1.1 μM BA + 2.7 μM NAA + 2.5 μM IBA	Sing <i>et al.,</i> 1994
C. reticulata	Mandarin	Internodal stem segments		MS + 33.3 μM BA + 5.4 μM NAA	½ MS + 2.7 μM NAA	Pérez-Molphe-Balch & Ochoa- Alejo (1997)
C. sinensis	Sweet orange	Nodal and internodal stem segments		MS + 10 μM BA	W + 10 μM NAA	Barlass and Skene, 1982
C. sinensis	Sweet orange	Nodal stem segments		MS + 4.4 µM BA	MS + 16.1 μM NAA	Duran-Vila et al., 1989

Table 1. Regeneration of Citrus and related species by organogenesis. Hormones concentrations are expressed in μM

Species	Common name	Explant	Medium & PGR for callus formation	Medium & PGR for Shoot formation	Medium & PGR for Root formation	Reference
C. sinensis	Sweet orange	Nodal and internodal stem segments		MS + 4.4 μM BA or 13.3 μM BA	MS + 54 µM NAA	Duran-Vila et al., 1992
C. sinensis	Sweet orange	Epicotyl and hypocotyl		MS + 8.89 µM BA + 0.76 µM ABA	Not reported	Maggon and Singh, 1995
C. sinensis	Sweet orange	Nodal stem segments		MS + 2.2 μM BA + 0.5 μM NAA	½ MS + 2.7 μM NAA + 2.5 μM IBA	Tapati et al., 1995
C. sinensis x P. trifoliata	Carrizo citrange	Shoot tips and nodal sections		MS-KNOP + 22.2 µM BA	MT + 5.4 μM NAA	Kitto and Young, 1981
C. sinensis x P. trifoliata	Carrizo citrange	Nodal and internodal stem segments		MS + 10 µM BA	W + 10 μM NAA	Barlass and Skene, 1982
C. sinensis x P. trifoliata	Troyer citrange	Epicotyl stem segments		MS + 2.2 µM BA + 0.5 µM NAA	MS + 10.7 µM NAA	Edriss and Burger, 1984
C. sinensis x P. trifoliata	Carrizo citrange	Internodal seedlings stem sections		MT + 22 μM BA + 5.4 μM NAA	$^{1\!\!/_2}MT$ + 5.4 μM NAA	Moore, 1986
C. sinensis x P. trifoliata	Carrizo citrange	Shoot-tip		MS + 4.4 μM BA + 2.5 μM IBA + 296 μM AD	MT + 5.4 μM NAA	Starrantino and Caruso, 1987
C. sinensis x P. trifoliata	Troyer citrange	Shoot-tip		MS + 4.4 µM BA + 2.5 µM IBA + 296 µM AD	MT + 5.4 μM NAA	Starrantino and Caruso, 1987
C. sinensis x P. trifoliata	Carrizo citrange	Nodal stem segments		MS + 4.4 μM BA + 2.5 μM IBA + 296 μM AD	MS + 5.4 μM NAA	Starrantino and Caruso, 1988
C. sinensis x P. trifoliata	Troyer citrange	Nodal stem segments		MS + 4.4 μM BA + 2.5 μM IBA + 296 μM AD	MS + 5.4 μM NAA	Starrantino and Caruso, 1988
C. sinensis x P. trifoliata	Carrizo citrange	Mature embryos	MT + 9 μM 2,4-D + 22.2 μM BA	MT + 22.2 μM BA + 5.4 μM NAA	MT + 5.4 μM NAA	Beloualy, 1991
P. trifoliata	Trifoliate orange	Nodal and internodal stem segments		MS + 10 µM BA	W + 10 μM NAA	Barlass and Skene, 1982
P. trifoliata	Flying Dragon	Shoot-tip		MS + 2.2 μM BA + 1.2 μM IBA + 296 μM AD	MS + 5.4 μM NAA	Starrantino and Caruso, 1987
P. trifoliata	Flying Dragon	Nodal stem segments		MS + 2.2 μM BA + 1.2 μM IBA + 296 μM AD	MS + 5.4 μM NAA	Starrantino and Caruso, 1988
P. trifoliata	Trifoliate orange	Mature embryos	MT + 9 μM 2,4-D + 22.2 μM BA	MT + 22.2 μM BA + 5.4 μM NAA	MT + 5.4 μM NAA	Beloualy, 1991
P. trifoliata	Trifoliate orange	Hypocotyl		MS + 44.4 µM BA	½ MS + 0.5-5.0 μM IBA	Harada and Murai, 1996
P. trifoliata	Trifoliate orange	tTCL from stem internodes		MS + 10 µM BA + 1 µM TDZ	MS + 5 µM NAA	Van Le et al., 1999

Abbreviation used in the table

AD = Adeinine; BA = 6-benzylaminopurine; DKW = Driver-Kuniyuki medium; IBA = indole-3-butyric acid; KIN = kinetin; MS = Murashige and Skoog medium; MS-KNOP = medium based on MS microelements and Knop's macroelements and vitamins; NAA = α -naphthaleneacetic acid; PGR = Plant growth regulators (concentrations in μ M); TDZ = thidiazuron; tTCL = transverse thin cell layer; W = White medium

Technical protocols

Surface-sterilisation of citrus flowers

The conditions of the stock field-growing plants are very important for the establishment of explant *in vitro*. On the surface of the plant material growing in the field many microorganisms can be found (in some cases endogenous contamination are also present); they can be difficult to eliminate and can limit the initiation of axenic cultures. If the stock material is collected during the warm humid season (a period that corresponds with a vigorous growth) the bacterial and fungal contamination problems can be easily avoided in *Citrus* with a standard procedure for surface-disinfection.

Before the introduction *in vitro*, flowers collected from plant cultivated in the field or in the greenhouse are surface-disinfected. A typical protocol for citrus flower surface-disinfection is described below.

- 1) Collect the citrus flowers before opening and store them at 4 °C. The flowers can be maintained at 4 °C for 5-6 days.
- 2) For the surface sterilisation to work in a sterile environment (laminar cabinet), and manipulate the explants with sterile forceps and scalpels.
- 3) Surface-sterilise the entire flowers by immersion for 5 min in ethanol (70% v/v in water).
- 4) Sterilise by immersion for 15 min in 2% sodium hypochlorite (2% w/v in water). It is possible to use a solution 20% commercial bleach (20% v/v in water).
- 5) After being sterilised the flowers are open under sterile conditions.
- 6) Those flowers in which the sterilisation solution does not penetrate through the petals are used. For culture initiation only non-brownish pistils are use. With the scalpel, stigmas, and styles are dissected from ovaries (with a cut perpendicularly to the longitudinal axis).
- Styles and stigmas are placed vertically on the culture medium with the cut surface of the style in contact with MS-solidified medium (containing 3 mg/LBAP).

Murashige and Tucker medium preparation

The medium composition for culturing *Citrus in vitro* is usually based on the nutrients and vitamins of the MS medium, although in some cases better results are obtained with Murashige and Tucker medium (MT) (1969). The

MT medium contains the inorganic salts of MS medium plus 26.6 μ M glycine, 554.9 μ M myo-Inositol, 40.6 μ M nicotinamide, 48.6 μ M pyridoxine-HCl and 29.7 μ M thiamine-HCl.

Literature

- Murashige T and Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 15:473-497
- Murashige T and Tucker DPH (1969) Growth factors requirements of citrus tissue culture. 1st Int Citrus Symp., 3:1155-1161

Vitamin	MS medium mg/l	MT medium mg/l	Molecular weight
Glycine	2.0	2.0	75.05
Myo-Inositol	100	100	180.2
Nicotinamide	0.5	5.0	123.1
Pyridoxine HCL	0.5	10.0	205.6
Thiamine HCL	0.1	10.0	337.3

The Mt medium is a MS medium modified as follows:

To prepare 200 ml of a Stock MT vitamin solution 1000x use the following quantities of vitamins:

Vitamin	Stock 1000X (g/200 ml)
Glycine	0.4
Myo-Inositol	20.0
Nicotinamide	1.0
Pyridoxine HCL	2.0
Thiamine HCL	2.0

Dissolve the vitamins in 200 ml of distilled water, (heat at 60°C). Store at -20°C. For the preparation of 1 L MT medium add 1 ml of MT vitamin stock solution 1000x to 1 liter containing the inorganic salts of MS medium.

Murashige & Skoog (MS) culture medium preparation

The medium was described by Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-497.

Macro and microelements

To prepare 500 ml of Stock solution 100X use the following quantities of salts:

Compound	Quantity g salt / 500 ml solution	Nome solution	Store at
NH4NO3	82.5	- Solution A	Room
KNO3	95.0	Solution A	Temperature
MgSO ₄ 7H ₂ O	18.5		4 °C
MnSO ₄ 4H ₂ O	1.12	Calutian D	
ZnSO ₄ 7H ₂ O	0.43	- Solution B	
CuSO ₄ 5H ₂ O	0.00125		
CaCl ₂ 2H ₂ O	22.0		4 °C
KI	0.0415	Solution C	
CoCl ₂ 6H ₂ O	0.00125		
KH ₂ PO ₄	8.5		4 °C
H ₃ BO ₃	0.31	Solution D	
Na2MoO4 2H2O	0.0125		
FeSO ₄ 7H ₂ O	1.392	Solution E	4 °C
EDTA	1.865	Solution F	4 °C

The solutions are sterilised by autoclaving at 121 $^{\circ}\mathrm{C}$ for 20 min or filter sterilise.

Vitamins

To prepare 100 ml of a Stock vitamin solution 1000x use the following quantities of vitamins:

Vitamin	Quantity (g)
Tiamine (B ₁)	0.010
Nicotinic Acid (B ₃)	0.050
Myo-Inositol	10.000
Glicine	0.200

Dissolve the vitamins in 50 ml of distilled water, (heat at 60 °C). Add distilled water to 100 ml of final volume and filter sterilize. Store at -20 °C.

Protocol for the preparation of 1 L MS medium:

- 1. Add 500 ml of distilled water in a 1 L beaker.
- 2. Add 10 ml of each of the 6 stock solutions (A-F).
- 3. Add 1 ml of vitamin 1000x.
- 4. Add 30-50 g of sucrose.
- 5. Add (if necessary) growth regulators.
- 6. Add distilled water to 1 Litre of final volume.
- 7. Adjust pH to 5.7 with 0.5 M HCl or KOH.
- 8. Transfer the medium in 1 Litre Erlenmeyer flasks.
- 9. Add 8-10 g of agar.
- 10. Sterilise by autoclaving for 15-20 min at 121 °C.
- 11. Transfer the medium in the Petri dishes (8 ml / 60 mm Ø Petri dish, or 25 ml / 100 mm Ø Petri dish).

- D'Onghia AM, De Pasquale F, Carimi F, Savino V and Crescimanno FG (1997). Somatic embryogenesis from style culture as possible means for virus elimination in *Citrus*. J Phytopathology 145: 77-79.
- D'Onghia AM, Carimi F, De Pasquale F, Djelouah K and Martelli GP (2001). Elimination of citrus psorosis virus by somatic embryogenesis from stigma and style cultures. Plant Pathol. 50: 266-269.
- D'Onghia AM, Carimi F, De Pasquale F, Djelouah K and Martelli GP (2000). Somatic embryogenesis from style culture: a new technique for the sanitation, conservation, and safe exchange of citrus germplasm. Proc. Int. Soc. Citriculture, In press
- Duran-Vila N and Navarro L (1989). Morphogenesis and tissue cultures of three citrus species. Plant Cell Tissue Org. Cult. 16: 123-133.
- Duran-Vila N, Gogorcena Y, Ortega V, Ortiz J and Navarro L (1992). Morphogenesis and tissue culture of sweet orange (*Citrus sinensis* (L.) Osb.): Effect of temperature and photosynthetic radiation. Plant Cell Tissue Org. Cult. 29:11-18.
- Edriss MH and Burger DW (1984). *In vitro* propagation of 'Troyer' citrange from epicotyl segments. Scientia Horticulturae 23: 159-162.
- Gill MIS, Singh Z, Dhillon BS and Gosal SS (1995). Somatic embryogenesis and plantlet regeneration in mandarin (*Citrus reticulata* Blanco). Scientia Horticulturae 63: 167-174.
- Goh CJ, Sim GE, Morales CL and Loh CS (1995). Plantlet regeneration through different morphogenic pathway in pommelo tissue culture. Plant Cell Tissue Organ Culture 43: 301-303.
- Grosser JW and Chandler JL (1986). *In vitro* multiplication of Swingle citrumelo rootstock with coumarin. HortScience 21: 518-520.
- Harada H and Murai Y (1996). Clonal propagation of *Poncirus trifoliata* through culture of shoot primordia. J. Hort. Sci. 71: 887-892.
- Hidaka T, Yamada Y and Shichijo T (1981). Plantlet formation from anthers of *Citrus aurantium* L. Proc. Int. Soc. Citriculture 1:.153-155.
- Kitto SL and Young MJ (1981). *In vitro* propagation of Carrizo citrange. Hort. Science 16: 305-306.
- Kobayashi S, Ikeda I and Nakatani N (1982). Studies on nucellar embryogenesis in Citrus. III. On the differences in ability to form embryoids in *in vitro* culture of ovules from poly- and mono-embryonic cultivars. Bull. Fruit Tree Res. Sta. E. 4: 21-27.
- Kochba J and Button J (1974). The stimulation of embryogenesis and embryoid development in habituated ovular callus from the 'Shamouti' orange (*Citrus sinensis*) as affected by tissue age and sucrose concentration. Z. Pflanzenphysiol. 73: 415-421.
- Kotsias D and Roussos PA (2001). An investigation on the effect of different plant growth regulating compounds in *in vitro* shoot tip and node culture of lemon seedlings. Scientia Horticulturae 89: 115-128.
- Litz RE, Moore GA and Srinivasan C (1985). *In vitro* system for propagation and improvement of tropical fruits and palm. Horticultural Reviews 7: 157-200.
- Maggon R and Singh BD (1995). Promotion of adventitious bud regeneration by ABA in combination with BAP in epicotyl and hypocotyl explants of sweet orange (*Citrus sinensis* L. Osbeck). Scientia Horticulturae 63: 123-128.

- Maheshwari P and Rangaswamy NS (1958). Polyembryony and *in vitro* culture of embryos of *Citrus* and *Mangifera*. Ind. J. Hort. 15: 275-282.
- Mas O, del Valle N, Rìos A and Ramos M (1992). *In vitro* propagation of Citremon. Proc. Int. Soc. Citriculture 1: 318-320.
- Mitra GC and Chaturvedi HC (1972). Embryoids and complete plants from unpollinated ovaries and from ovules of *in vivo*-grown emasculated flower buds of *Citrus* spp. Torrey Bot. Club 99: 184-189.
- Moore GA (1985). Factors affecting *in vitro* embryogenesis from undeveloped ovules of mature citrus fruits. J. Am. Soc. Hort. Science 110: 66-70.

Moore GA (1986). In vitro propagation of Citrus rootstocks. Hort. Science 21: 300-301.

- Murashige T and Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497.
- Murashige T and Tucker DPH (1969). Growth factors requirements of citrus tissue culture. 1st Int Citrus Symp, 3:1155-1161.
- Nito N and Iwamasa M (1990). *In vitro* plantlet formation from juice vesicle callus of satsuma (*Citrus unshiu* Marc.). Plant Cell Tissue Org. Cult. 20: 137-140.
- Normah MN, Hamidah S and Ghani FD (1997). Micropropagation of *Citrus halimii* an endangered species of South-east Asia. Plant Cell Tissue Org. Cult. 50: 225-227.
- Paudyal KP and Haq N (2000). *In vitro* propagation of pummelo (*Citrus grandis* L. Osbeck). *In Vitro* Cell Dev. Biol. Plant 36: 511-516.
- Pérez-Molphe-Balch E and Ochoa-Alejo N (1997). *In vitro* plant regeneration of mexican lime and mandarin by direct organogenesis. Hort. Science 32: 931-934.
- Raman H, Gosal SS and Brar DS (1992). Plant regeneration from callus cultures of *Citrus limon* and *C. jambhiri*. Crop Improvement 19: 100-103.
- Rangan TS, Murashige T and Bitters WP (1968). *In vitro* initiation of nucellar embryons in monoembryonic citrus. Hort. Science 3: 226-227.
- Sim GE, Goh CJ and Loh CS (1989). Micropropagation of *Citrus mitis* Blanco-multiple bud formation from shoot and root explants in the presence of 6benzylaminopurine. Plant Sci. 59: 203-210.
- Singh S, Ray BK, Bhattacharyya S and Deka PC (1994). *In vitro* propagation of *Citrus reticulata* Blanco and *Citrus limon* Burm. Hort. Science 29: 214-216.
- Starrantino A and Russo F (1980). Seedlings from undeveloped ovules of ripe fruits of polyembryonic citrus cultivars. Hort. Science 15: 296-297.
- Starrantino A and Caruso A (1987). Experiences on the '*in vitro*' propagation of some citrus rootstocks. Acta Horticulturae 212: 471-478.
- Starrantino A and Caruso A (1988). *In vitro* culture for citrus micropropagation. Acta Horticulturae 227: 444-446.
- Tapati D, Mitra GC, Chatterjee A and Das T (1995). Micropropagation of *Citrus* sinensis var. Mosamby an important scion. Phytomorphology 45: 57-64.
- Van Le B, Thanh Ha N, Anh Hong LT and Tran Thanh Van K (1999). High frequency shoot regeneration from trifoliate orange (*Poncirus trifoliata* L. Raf.) using the thin cell layer method. Comptes Rendus Acad. Sci. Paris, Life Sciences 322: 11056-1111.