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Use of remote sensing and geographic
information tools for irrigation

management of citrus trees
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*Instituto Valenciano Investigaciones Agrarias, Ctra Moncada-Náquera km 4.500,

P.O. Box 46113 Moncada, Valencia (Spain)

**geo-Environmental Cartography and Remote Sensing Group. Universitat Politècnica de València,

Camino de vera s/n 46022 Valencia (Spain)

Abstract. The most widely used method for estimating crops water requirements is the FAO approach, which

takes into account: (i) climatic variables included in the reference evapotranspiration and (ii) the crop type,

characterized by the crop coefficient (Kc). In citrus trees, Kc is mostly function of the tree ground covers (GC).

In large areas tree ground covers (GC) can be estimated by means of remote sensing tools, and once tree

water needs are calculated, this information can be implemented in geographic information systems. The

present article summarizes some of the research conducted in order to estimate citrus water needs in large

irrigated areas. It describes first how tree ground covers (GC) can be obtained by using image analysis tools

applied to multispectral images. Tree water needs are obtained and they are compared with the real water

applications for a case study of citrus water use associations. The results obtained allowed to conclude that

the tools developed might be useful for improving irrigation efficiency showing some of the deficiencies cur-

rently found in irrigation management of collective water networks.

Keywords. Crop coefficient – Ground cover – Image analysis – High-resolution remote sensing.

Utilisation des outils de télédétection et d’information géographique pour la gestion de l’irrigation en

vergers d’agrumes

Résumé. La méthode la plus largement utilisée pour estimer les besoins en eau des cultures est l’approche

de la FAO, qui tient compte : (i) des variables climatiques incluses dans l’évapotranspiration de référence et

(ii) du type de culture, caractérisé par le coefficient de la culture (Kc). Chez les agrumes, Kc est principale-

ment fonction de la couverture végétale au sol (GC). Sur de vastes étendues, la couverture végétale au sol

(GC) peut être estimée par des outils de télédétection, et après avoir calculé les besoins en eau des arbres,

cette information peut être mise en place dans des systèmes d’information géographique. Le présent article

résume certains des travaux de recherche menés afin d’estimer les besoins en eau des agrumes dans de

vastes zones irriguées. D’abord il est décrit comment calculer la couverture végétale du sol (GC) en appli-

quant des outils d’analyse d’image aux images multispectrales. Les besoins en eau des arbres sont obtenus

et comparés aux irrigations réelles pour une étude de cas concernant l’utilisation de l’eau par les associa-

tions de cultivateurs d’agrumes. Les résultats obtenus ont permis de conclure que les outils développés pour-

raient être d’utilité pour améliorer l’efficience d’irrigation car ils montrent certaines des lacunes rencontrées

actuellement en matière de gestion de l’irrigation dans les réseaux d’eau collectifs.

Mots-clés. Coefficient de culture – Couvert du sol – Analyse d’images – Télédétection à haute résolution.

I – Introduction

Irrigated agriculture has a noticeable importance with more than 45% of the total agriculture pro-

duction in the world (Molden, 2007). Water demand has been steadily increasing during the last

years and future forecasts indicate that water scarcity will become a major problem in many areas

of the world (Fereres and González-Dugo, 2009). It is then very important to achieve optimum effi-
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ciency in irrigation applications both on and off farm. It is striking that despite much effort has been

done in order to improve efficiency of water distribution along the whole chain, less attention has

been paid in terms of irrigation efficiency at the farm level. In this sense, the first crucial step is to

perform irrigation application in order to match as much as possible the plant water needs.

The most widely used method for estimating crops water requirement is the FAO approach (Allen

et al., 1998), which takes into account: (i) climatic variables included in the reference evapotran-

spiration (ETo), and (ii) the crop type, characterized by the crop coefficient (Kc). The crop evap-

otranspiration (ETc), which is the sum of the plant transpiration (T) and soil evaporation (E), is

then calculated as ETo by the Kc. The ETo is an estimation of atmosphere evaporation defined

as the evapotranspiration rate from a reference surface. Owing to the difficulty of obtaining accu-

rate field measurements, ETo is commonly computed from weather data. The principal weather

parameters affecting ETo are radiation, air temperature and humidity and wind speed. Nowadays

the FAO Penman-Monteith equation is the standard method for the definition and computation

ETo (Allen et al., 1998). With this model the ETo (mm/day) is obtained as

ETo(mm/day) = (0.408∆(Rn-G)+γ(900/T+273)U2(es-ea))/( ∆+ γ(1+0.34U2))

where ETo reference evapotranspiration [mm day-1], Rn net radiation at the crop surface (MJ m-2

day-1), G soil heat flux density (MJ m-2 day-1), T mean daily air temperature at 2 m height (°C),

u2 wind speed at 2 m height (m s-1), es saturation vapour pressure (kPa), ea actual vapour pres-

sure (kPa), es - ea saturation vapour pressure deficit (kPa), ∆ slope vapour pressure curve (kPa

°C-1), γ psychrometric constant (kPa °C-1).

The other variable used for computing the ETc, the Kc takes into account those characteristics

that differentiate each crop from the reference crop (Allen et al.,1998). Differences in resistance

to transpiration, crop height, crop roughness, reflection, ground cover and crop rooting charac-

teristics result in different ETc levels in different types of crops under identical environmental con-

ditions. Most of these parameters depend on the plant ground cover (GC). In the case of citrus,

Castel (2000) obtained an average yearly Kc based on the GC (Table 1).
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Table 1. Crop Coefficient (Kc) according ground
cover (GC,%) for citrus and fruit trees

GC(%) Citrus

20 > GC Kc = 0.021 + GC * 0.0174

20 < GC < 70 Kc = 0.274 + GC * 0.005

70 < GC Kc = Kc70

Table 2. Monthly citrus crop coefficient as reported in Castel (2000)

Average Jan Feb Marc Apr May Jun Jul Aug Sep Oct Nov Dec

0.68 0.66 0.65 0.66 0.62 0.55 0.62 0.68 0.79 0.74 0.76 0.73 0.63

Citrus trees crop coefficient also vary along the season with minima in spring and maxima in

autumn (Table 2) reflecting mainly changes in ground cover produced by pruning and by growth

of new leaves in spring and autumn, but also changes in soil evaporation produced by rainfall.

For computing irrigation water requirements rainfall contributions to the orchard water balance

should be also taken into account. Since, the total amount of rainfall is often not entirely avail-

able for tree transpiration the effective rainfall (Pef) should be estimated. This is because some

rainfall water might not be stored in the orchard due to runoff or drainage (FAO, 1978). In addi-



tion, in modern drip irrigated orchards, it is considered that the entire soil allotted per tree is not

colonized by roots that should be more localized within the dripper zone. In order to consider PEf
is estimated by means of a factor (Fpe) that relates the effective rainfall with the GC (Table 3).
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Table 3. Effective rainfall for citrus and fruit
trees according to season

Season Fpe factor

Winter Fpe = 1.25 * GC / 100

Summer Fpe = 1.25 * GC / 100

(as maximum Fpe = 0.8)

It is then clear that for optimum irrigation management is crucial to precisely estimate tree ground

covers that will be then used to both computing tree water requirements and rainfall contributions

to the net water orchard balances. Plants ground cover can be directly measured with a sampling

mesh as Wünsche et al., (1995) proposed. On another hand, Castel (2000) used a ruler to meas-

ure canopy dimensions and GC was estimated as the horizontal projection of the canopy and it

was expressed as ratio to the planting spacing. GC can also be estimated by indirect methods

which are based mainly in the light interception measured by sensors (Giuliani et al., 2000) and

its representation in three dimension models (López-Lozano et al., 2011). For the determination

of a stand’s LAI (Leaf Area Index), there are direct techniques like harvesting of the whole canopy

or some samples of the vegetation, which are destructive and laborious. Taking samples of litter

is non-destructive but also very time-consuming (Holst et al., 2004). Due to the difficulties of the

direct techniques, indirect techniques are preferred. Tools such as hemispherical photography

and cover photography (Macfarlane et al., 2007), the LAI 2000 and LAI 2200 (LI-COR Biosciences),

LAI ceptometer (Decagon Devices) and Tracing Radiation and Architecture of Canopies (TRAC;

Chen, 1996) allow measuring LAI in a non-destructive way.

However, for the determination of GC and LAI for large extensions, like irrigation areas, the use

of these techniques entails a large amount of samples and long processing time. For this reason,

remote sensing techniques become valuable tools in order to estimate these parameters. Due to

the physiologic features of tree crops, high resolution images are required to estimate with accu-

racy these parameters.

High spatial resolution images have been available since the beginning of aerial photography, but

their application to agriculture and forestry dramatically increased with the first near-infrared

(NIR) photographs, and even more with the use of digital cameras that reduced acquisition costs

and provided more homogeneity in terms of radiometric calibration of the scenes. Additionally, at

the end of the 20th century and the very beginning of the 21st a new generation of high resolu-

tion satellites brought availability of data with a high frequency of acquisition. Among these satel-

lites with onboard high resolution sensors, the series of Ikonos (2000), EROS-A and B (2000,

2006), QuickBird (2001), OrbView-3 (2003), WorldView-1 and 2 (2007 and 2009), GeoEye (2008)

or RapidEye (2008) are very representative, typically having panchromatic and/or multispectral

sensors, the former with spatial resolutions ranging from 0.5 to 1 m/pixel and the latter from 2 to

4 m/pixel. Panchromatic images have one band with spectral sensitivity in the visible and very

near infrared, while the multispectral images from these high resolution sensors usually have four

bands centred on the visible and NIR regions of the electromagnetic spectrum. Furthermore, the

image fusion techniques allow for the combination of both types of images, obtaining a new

image with the spatial detail of the panchromatic and the spectral bands of the multispectral,

while preserving most of the information contained in the original images. These techniques are

continuously improving and provide an excellent alternative and complement to the digital aerial

colour-infrared imagery, several of them being reported in Wald et al., (1997), Nuñez et al., (1999),

Ranchin and Wald (2000) and many other authors. Regarding new remote sensing sensors that



can be used in ground cover determination, it seems appropriate to mention the new Aerial Laser

Scanning (ALS) or Light Detection and Ranging (LiDAR) systems, thoroughly des cribed by

Baltsavias (1999). LIDAR technology works by continuously sending energy pulses to the ground,

that impact on Earth’s surface and return to the sensor. The return time allows registering the posi-

tion and coordinates of the recorded points and, therefore, measures terrain, vegetation, and other

elements in 3D. The final point cloud data can be processed and analyzed for ground cover esti-

mation, as well as many other applications. However, current unavailability of these data on a reg-

ular basis, as well as their high cost, make it out of the scope of this chapter.

II – Remote sensing tools for estimation of citrus tree ground cover

Automated detection of trees and ground cover from multispectral imagery has been mainly

focused on forest applications (Wulder et al., 2000; Culvenor, 2002; Pouliot et al., 2002; Wang et

al., 2004), but some image processing methods have also been reported for olive tree detection,

both semi-automated (Kay et al., 2000) and automated (Karantzalos and Argialas, 2004; García-

Torres et al., 2008), and for Citrus and fruit tree identification (Recio et al., 2009). In general, meth-

ods for ground cover estimation from images are based on classification techniques, supervised

or unsupervised, on tree identification algorithms using local maxima approaches from vegetation

indices or other band combinations and filtering approaches, or on hybrid methods combining seg-

mentation, classification and the application of a variety of filters. In this section, a review and brief

description of these techniques is made, focusing on the case of agricultural tree plots.

1. Overall methodology

Independently of the efficiency or performance of the method used, an important and practical

aspect to consider in ground cover estimation is the fact that it is very sensitive to the binomial

ground tree size and image spatial resolution. In small trees, the relative error due to the tree

perimeter uncertainty becomes higher. Analogous effect occurs when the spatial resolution of the

image is smaller (pixel size larger), that is, the tree border error quantifying the ground cover

increases (Fig. 1a). Therefore, in the selection of the appropriate spatial resolution of the images,

the average size of the trees to be processed is an important factor to be considered.

Options Méditerranéennes, B no. 67, 2012150

Fig. 1. (a) Effect of the image spatial resolution on the accuracy of the estimation of the ground cover
area on the border of the tree; and (b) average spectral response curve of bare soil, vegetation
and shadow, showing in blue the sensitivity of red and NIR bands, and in red their sharp dif-
ference in reflectance for vegetation.



Another important factor is the spectral information provided by the image. Since the spectral

reflectance of the vegetation increases sharply in the infrared, due to the scattering of this radi-

ation caused by the random arrangement of the cells and the intercellular air spaces in the

spongy mesophyll layer of the leaves, the availability of visible and NIR bands is very important

to accurately differentiate soil or shadow from a tree, and subsequently to obtain good ground

cover estimations. Figure 1b illustrates this effect.

After the selection of the most appropriate images, and depending on the source and distribution

institution or agency, a set of pre-processing operations must be done before applying any algo-

rithm to the analysis of the data:

– The radiometric adjustment of the different scenes to be used, consisting of the reduction of the

differences between scenes in terms of illumination or calibration of the sensors. This is usu-

ally more noticeable in aerial images, where images from different strips present distinct

observation angles. The adjustment can be carried out by means of histogram matching, his-

togram specification, regression of radiometric values or similar techniques.

– Geometric corrections are needed to eliminate geometric distortions generated on the image

due to the acquisition process. They are variable depending on the platform (satellite or aerial),

and on the topography of the terrain.

– Fusion techniques refer to the combination of panchromatic and multispectral images to obtain

a new image with the spatial resolution of the first and the spectral information of the second.

They may be applied if these two types of images are available.

– Finally, some smoothing filtering processes may be applied to remove noise from the images

and to enhance the differences between the trees and the background, facilitating the per-

formance of the tree detection algorithms. These filters are variable depending on the authors

and the characteristics of the agricultural plots.
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Fig. 2. Overall methodology for tree ground cover estimation from satel-
lite and aerial images. (I) Procedures based on classification; (II)
Procedures based on tree detection algorithms and segmentation.



Figure 2 shows a generic procedure for ground cover estimation, where two different types of

approaches are distinguished (branches "I" and "II") after the pre-processing steps. The next two

sections describe these general alternatives, one of them based on the multispectral classifica-

tion of the images, and the other based on the detection of the trees followed by region growing

procedures or analogous segmentation techniques.

2. Methods based on image classification

Image classification is the process used to produce thematic maps from imagery, and consists of

the extraction of descriptive features from the pixels or objects in the image, and their assignation

to a class or category according to that quantitative information. Two main types of image classifi-

cation techniques can be considered: supervised and unsupervised. In supervised classification,

the analyst selects representative sample sites of known cover type, called training areas, compil-

ing a numerical description of each class. Each pixel or object in the data set is then compared to

them and is labelled with the most similar class. Many different algorithms or classification methods

can be used to measure this similarity and generate decision rules, such as minimum distance,

maximum likelihood, other based on decision trees, neural networks, etc. The maximum likelihood

classifier, a statistical standard method, quantitatively evaluates both the variance and covariance

of the category spectral response patterns when classifying an unknown pixel, assuming that the

distribution of the cloud points forming the category training data is Gaussian. Given the mean vec-

tor and the covariance matrix of each category pattern, the probability of a given pixel or object

being a member of a particular land cover class can be computed (Lillesand and Kiefer, 2000).

Figure 3b shows the result of classifying a citrus plot in three classes: tree, shadow and soil.

Unsupervised classifiers do not utilize training data as the basis for classification. Rather, they

involve algorithms that examine the pixels in an image and aggregate them into a number of

unknown classes based on the natural groupings or clusters present in the image values. In these

approaches, spectrally separable classes are automatically determined and then their informa-

tional category is defined by the analyst. There are numerous clustering algorithms, one of the

most common is the K-means, an iterative method that arbitrarily creates K clusters and each pixel

is assigned to the class whose mean vector is closest to the pixel vector. This step is iterated until

there is not significant change in pixel assignments. A common modification is known as the ISO-

DATA algorithm, which includes merging the clusters if their separation is below a threshold, and

splitting of a single cluster into two clusters if it becomes too large. These algorithms present the

advantage, compared to the supervised, that they work in an automatic manner, since no previ-

ous information is needed to classify the images. However, several parameters must be initially

set by the user, such as number of classes, number of iterations, or some thresholds used to stop

the iterations. Figure 3c shows the result after classifying a plot in tree, shadow and soil.
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Fig. 3. Example of the classification of a citrus plot in 3 classes: tree (red), shadow (blue), soil and
background (white). (a) Original colour-infrared image; (b) supervised classification using max-

imum likelihood algorithm; and (c) unsupervised (ISODATA) classification using the following
parameters: 3 classes, 5 maximum iterations, 5% change threshold.



Classification methods for ground cover estimation are not considered as fully automated, since

they require selection of training samples (supervised methods) or definition of parameters

(unsupervised methods). However, the main handicap of supervised classification is the large

variability of tree and soil response in different plots even from the same area, which makes the

extrapolation of the training samples and the decision functions very difficult, making this tech-

nique by itself limited to small areas with homogeneous plantations. On the other side, the defi-

nition of parameters required by unsupervised approaches is difficult and involves uncertainty,

yielding results that are only approximate. Finally, other limitation is that since they are usually

based on the spectral response of the vegetation, weeds may be often misclassified as trees,

with the subsequent commission error in tree coverage determination.

3. Methods based on tree detection and segmentation

These methods prioritize the identification and localisation of the trees that are present in a plot,

and then use these locations as seeds for the definition of the tree crowns. Although there is a

variety of methods that are used for tree detection, especially in forest applications, the most

used are those based on the local maximum filtering (LMF) algorithm (Gougeon, 1995). This

algorithm assumes that NIR reflectance has a peak at the tree apex and decreases towards the

crown edge. Thus, after computing the Normalised Difference Vegetation Index (NDVI), that

enhances the different reflectances of vegetation canopy in the NIR and red (NIR-Red/NIR+Red),

a moving window can be applied over the NDVI image (Fig. 4a), considering a tree when the cen-

tral value in the window is higher than the other values. The size of the filtering window can be

either determined as a function of the average size of the trees, or automatically defined for each

plot by the position of the first maximum on the semivariogram curve (Ruiz et al., 2011). Figure

4b shows the result of the application of the LMF over a citrus plot.

After tree detection, region growing or segmentation algorithms are applied to define the crown

surrounding each tree. Region growing is an iterative process which starts at "seed" pixels from

the set generated using the LMF algorithm. Pixels from the neighbourhood of each seed are pro-

gressively classified as belonging or not to the same crown as the seed (Hirschmugl et al., 2007).

Classification criteria are typically based on absolute distance from the seed, brightness gradient

thresholds, spectral coherence, etc. Figure 4c shows the ground cover mask resultant after the

application of the region growing process.
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Fig. 4. Extraction of ground cover area on the image example of Fig. 3a using a tree detection
approach. (a) NDVI image; (b) application of the local maxima on the NDVI image; (c) cover area
after region growing.

Finally, other approaches are based on the application of hybrid methods, such as the combina-

tion of unsupervised classification, local maxima filtering, region growing, etc. An example of

these combined techniques for ground cover estimation in citrus orchards is described in detail



in other chapter of this book. In addition, new sensors like airborne LiDAR allow for the integra-

tion of these data with multispectral images to provide a better accuracy in tree detection and

crown cover. This will very likely be the trend during the next several years to increase the relia-

bility of these methodologies. The methodology involves the preprocessing of LiDAR data to cre-

ate a digital surface model (DSM), digital terrain model (DTM), and normalised digital surface

model (nDSM). Then, the integration of spectral information from the images and height data

from LiDAR, allows for a better estimation of ground cover (Fig. 5).
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Fig. 5. Example of the combination of aerial images and LiDAR data for ground cover estimation. (a)

Colour-infrared image; (b) nDSM directly computed from low density LiDAR data (source:

PNOA 2009); (c) 3D perspective with the image draped over the DSM; and (d) tree crowns (in

green) automatically delineated after region growing.

III – Integral irrigation water management at farm and district level

1. Implementation in Decision Support Systems

To optimize the use of all inputs involved in irrigation (water, energy and fertilizers) it is necessary

to keep track of all the processes that are involved, with the aim of detecting weaknesses in man-

agement and try to improve them. Given the large amount of information required to do so, it is

advisable to use a Decision Support System (DSS), which feeds the processes with different

alternatives assessing the results in each case. Since most of the information used is spatial,

Geographic Information Systems (GIS) are shown as the best working tool for this purpose.

The required data to be implemented in a DSS comes from different sources. Data can be grouped

in two categories, according if they are used for agronomic or hydraulic purposes.

The agronomic processes deal with crop water requirements, irrigation scheduling and fertiliza-

tion. To simulate these processes the needed data are:

– Cadastral information. This data let to know plot features as area and location. It can be

obtained from public databases in standard formats.

– Soils. This information supplies soil characteristics like texture to calculate water crop requirements.

– Crops. In the case of citrus trees, planting spacing, ground cover, and root depth are required

to estimate water crop requirements.

– Irrigation subunits. These data are useful to calculate irrigation time for scheduling. For exam-

ple, in drip irrigation, emitter flow is required to calculate theoretical irrigation time. Moreover

depending of the subunit and its management, net water crop requirements are increased to

supply a minimum water amount to all plants (Arviza, 1996).



– Agroclimatic information. ETo ad Pe are required to compute net water crop requirements. Irri-

gation Advisory Services from local governments make available agroclimatic information

obtained from station networks with daily frequency. Figure 6 shows the network of agroclimatic

stations of the Valencia region (Spain).

This information can be incorporated to the DSS to calculate daily water crop requirements.
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Fig. 6. Net of meteorological weather stations belong-
ing to the Irrigation Technology service of the
Instituto Valenciano Investigaciones Agrarias.

The hydraulic processes give information about how water is delivered and if it is done with the

required guarantees of pressure, amount and quality. Also by means of performance indicators

the system can be assessed (Córcoles et al., 2010).

The required data about are the network layout, pumps, control devices (control systems,

valves), hydrants, intakes, flow meters and irrigation scheduling. Figure 7 summarizes the data

required for the agronomic and hydraulic management.

Focussing on the agronomic management, a DSS can calculate the crop water requirements and

the irrigation time of all plots for irrigation scheduling.

In order to assess irrigation performing a DSS can give information about how water has been

delivered to plots to meet crop water requirements. An indicator used for this purpose is the

Seasonal Irrigation Performing Index (SIPI) that relates the crop water requirements with the water

supplied (Faci et al., 2002). Values lower than 100 mean that a crop it is being irrigated more than

required. Values higher than 100 means that a crop is being irrigated less than required.



2. Application to a case study

Next it is showed the implementation of a case study of a DSS called HuraGIS (Jiménez-Bello,

2010) in the Water User Association (WUA) of Senyera in Valencia (Spain) a region with Medite -

rranean climate. The total irrigated area was 104 ha, cropped entirely with citrus. Water was allo-

cated by a pressurised irrigation network. There were 280 operating intakes that irrigated 356

plots. The average plot size was 3093 m2. Crops were dripping irrigated.

GC was calculated using techniques depicted in above with the 2006 and 2008 ortophotos from

the Spanish National Plan of Aerial Photography. Water crop requirements were calculated using

agroclimatic data from the nearest station of the network of Valencia region.

Figure 8 shows the monthly SIPI (%) for four irrigation seasons (2006, 2007, 2008, 2009) for all

parcels of the WUA. The annual SIPI (%) for these years were 117, 80, 81, and 67, respectively.
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Fig. 7. Data required to be implemented in a DSS for the agronomic and the hy -
draulic management.

Fig. 8. Seasonal Irrigation Performing Index (SIPI) for the study case of
Senyera for four seasons (2006, 2007, 2008, 2009).
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Fig. 9. Monthly ETo (mm) and Pr (mm) for the study case of Senyera.

Fig. 10. (A) Map of Seasonal Irrigation Performance Index (%) for the 2010 of the study case of Seny-
era. (B) Histogram of SIPI(%) for the irrigation intakes of the study case.



Those values close to 100% mean that crops were properly irrigated. As it can been seen these

values are around 100% in summer, the months with higher demand. Values below 0 are due to

rainfall, which was not properly taken into account for irrigation scheduling as it can be seen in

Figure 9. The lower values of monthly SIPI(%) correspond to the months of rains.

The map of Fig. 10 shows the annual SIPI(%) for each irrigated parcel in 2010 of the study case.

The histogram shows the existing variability at WUA level. Most of plots irrigated by the network

intakes have SIPI values that range from 80% to 120% which means that are properly irrigated.

But 20% of plots are overirrigated. On the other side 20% of plots are underirrigated.

With this information obtained via performance analysis, recommendations can be given to users

to improve their irrigation efficiency. For example, in plots which are under-irrigated, users can

modify either their irrigation time or increase the emitter number with the aim of increasing the

received water amount.
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