

Improvement studies of Medicago sp. for the Mediterranean climatic conditions of Aegean region

Avcioglu R., Geren H., Munzur M.

in

Genier G. (ed.), Prosperi J.M. (ed.). The Genus Medicago in the Mediterranean region: Current situation and prospects in research

Zaragoza : CIHEAM Cahiers Options Méditerranéennes; n. 18

1996 pages 133-141

Article available on line / Article disponible en ligne à l'adresse :

http://om.ciheam.org/article.php?IDPDF=96605768

To cite this article / Pour citer cet article

Avcioglu R., Geren H., Munzur M. Improvement studies of Medicago sp. for the Mediterranean climatic conditions of Aegean region. In : Genier G. (ed.), Prosperi J.M. (ed.). *The Genus Medicago in the Mediterranean region: Current situation and prospects in research*. Zaragoza : CIHEAM, 1996. p. 133-141 (Cahiers Options Méditerranéennes; n. 18)

http://www.ciheam.org/ http://om.ciheam.org/

R. Avcioglu¹, M. Munzur² and H. Geren³

ABSTRACT

Turkish research workers encounter many times different problems of agriculture in different regions of Turkey which has diversity of climatic conditions throughout Anatolian peninsula. Coastal part of Aegean region with an extreme Mediterranean climate is one of these agricultural regions and the shortage of hay and quality feed production is among the main obstacles existing in the animal husbandry sector of agriculture in the area.

Main objective of the Pasture and Forage Crop Section of Field Crop Department, Agriculture Faculty, Aegean University is to develop research projects on the promotion of forage crop production and pasture management in this part of the country. Recent studies have been focused on the alfalfa improvement programs and on annual medics to be used for the marginal land renovations.

Some basic results of alfalfa variety evaluation, single crop selection and annual medic comparison studies were discussed in this article.

Key words: Medicago, Turkey, breeding objectives, agronomical traits, annual medics

1 INTRODUCTION

It is difficult to say that human nutrition in Turkey is sufficient and well balanced in terms of protein consumption, although the country is known as a self-sufficient one (Avcioglu, 1975).

The yields of our farm animals are very low because of the shortage of forage sources and the low yields of oriental breeds. These breeds comprise 96% of the sheep and 62% of the cattle sources of the country, but the total numbers of these animals are very high, i.e. 70 millions of heads. As an example, the average meat and milk yield per cow is 300 kg and 5,000 kg in EC countries whereas it is only 150 kg meat and 1,200 kg milk per cow in Turkey.

The acreage of forage crops is quite limited, 2.7% of the whole cultivated area although it is the most important feed source following natural pastures and meadows in the country. However, in the developed countries of Europe these forage crop cultivation area are generally 20-25% of the total.

In addition to some other factors (social, cultural and economical obstacles), the shortage of forage crops seed production and the low quality standards of the material are among the reasons limiting forage crop production.

Considering the importance of the matter, we would like to emphasize the impact of the seed production programs of the Ministry of Agriculture. According to the newly established program only about 1,000 tons of alfalfa seed will be distributed to the farmers in countrywide in 1995. This case is a typical example of shortage of high quality forage production in the country.

¹Aegean University Agriculture Faculty Field Crop Department, Bornova-Izmir-Turkey.

² Ministry of Agriculture and Rural Affairs, Ankara-Turkey.

³Aegean University Agriculture Faculty Field Crop Department, Bornova-Izmir-Turkey.

Remembering the limited forage crop production and unproductive structure of animal husbandry sector, it is very easy and reasonable to stress that alfalfa cultivation is one of the solution measures for the problem. After the development of programs for the extension of alfalfa cropping systems, it is obvious that it will be necessary to have suitable cultivars for the different regions of Turkey, particularly for Mediterranean climatic parts. Our first project aims to test many cultivars and to select proper material for our Aegean region and to develop material for further breeding programs.

It should also be emphasised that the region has marginal lands with many agricultural problems. These lands are composed of mainly natural pastures and some woody and shrubby areas, stony or rocky wastelands. Since these pastures occupy a significant part of the marginal lands and constitute the essential feed source of the grazing animals in the region, some improvement measures should also be imposed on the vegetation. It is quite obvious that annual medics are most beneficial crops to introduce to these poor plant canopies, additionally they are the natives of those environments. Considering these peculiarities of the agricultural structure of region we established another project on annual medics to test the local populations and some introductions.

2. ALFALFA IMPROVEMENT STUDIES

1.1 Variety evaluation

Material and Method: Many varieties of alfalfa originating from different ecosystems were chosen for the first step of our alfalfa improvement program started in 1986. Mesa-Sirsa, Peruvian, Moapa, Uinta, Sonora, Scout, Washoe, WL-202, Wernal, Apex, Caliverde, Lahontan, Cody, local ecotype Bayindir, Cardinal, WL-522, Zia, Ranger, and Ladak were the varieties tested in yield experiment and some of these varieties in addition to Diabloverde, Chilean, B-12 and Matador were the material tested in single crop selections.

19 Alfalfa varieties were compared in a randomised complete block design with three replications. The plot size was $2.0 \times 5.0 = 10.0 \text{ m}^2$; having 10 rows in each plot. The total of first four cuts as green matter yield, dry matter rate and yield, crude protein rate and yield were used as criteria for the comparisons.

Results and Suggestions

Green and Dry Matter Rates and Yields: The total green and dry matter yields of 4 cuts of cultivars are shown in Table 1. As it is seen in this Table, Mesa-Sirsa, Moapa, Peruvian, Uinta and Sonora had the highest yields and the second group Scout, Washoe, XL-202 and Wernal followed these high yielders. The variation in dry matter percentage and yield figures were also very different from green matter yields. As it is shown in the same Table 1, Ranger, Cody and Lahontan had the highest dry matter percentages and Ladak, Scout, Wernal and Caliverde followed this group. When the data were tested in terms of dry matter yield characteristics, results indicated the superiority of the cultivars of Uinta, Mesa-Sirsa, Peruvian, Moapa, Sonora and Scout where Washoe, WL-202, and Wernal were in the following second group.

Crude Protein Rates and Yields: The data related to the crude protein contents indicated the high variation among the cultivars (Table 2). Some cultivars like Moapa, Peruvian, Sonora, Mesa-Sirsa, Bayindir (local population), WL-202, Apex, Uinta, Caliverde, Washoe and WL-522 were the most successful material with regard to the crude protein content whereas Cardinal, Ladak, Wernal, Lahontan and Cody were at the end of the group with the lowest crude protein content. On the contrary of the dry matter characteristics, crude protein percentage and yield data showed a very consistent variation and the cultivars ranked in the same line in terms of yield performances as in the percentages. For instance, Peruvian, Moapa, Mesa-Sirsa, Uinta, Sonora and Scout were again most successful cultivars in relation to crude protein yields. But Zia, Cardinal and Ladak had the lowest crude protein yielding capacity.

[able 1. Green matter]	vields, dry matter J	percentag	e and yields of some alfall	a cullivars grown unde	ו ווה ווכמורכוומוכמי כוווומורי		
Green matter	vields (kg/ha)		Dry matter pe	rcentage (%)	Dry matter y	ields (kg/ha)	
Cultivars	Mean		Cultivars	Mean	Cultivars	Mean	1
Mooo Ciroo	8707 6 A		Bander	29.00 A	Uinta	2066.00 A	
Mesa-Silsa Dominion	81660 AR		Codv	28.67 AB	Mesa-Sirsa	2038.67 AB	
Moono	8450 0 AR		Lahantan	27.67 ABC	Peruvian	2031.33 AB	
lvioapa 1 linta	8380 0 AB		Ladak	27.33 BC	Moapa	1997.67 AB	
Conora	8354 0 AB		Scout	26.67 CD	Sonora	1975.67 AB	
Scolut	7285.3 BC		Wernal	26.97 CD	Scout	1946.67 ABC	
Washas	6030 CD		Caliverde	26.67 CD	Washoe	1703.00 BCD	
	6520 0 CDF		Zia	25.67 DE	WL-202	1630.00 CDE	
WE-202 Marnal	6140 0 CDFF		Cardinal	25.33 DEF	Wernal	1628.00 CDE	
	5064 0 DFF	Ŀ	WI -202	25.00 EFG	Cody	1556.33 DEF	•
		- <u>-</u>	WI -522	25.00 EFG	Caliverde	1539.67 DEFG	
Callverue Lobonton	5479.0 EF	л Н С Н	Washoe	24.67 EFGH	Lahantan	1519.67 DEFGI	Ϊ
Cody	5427.0 FF	HS HS	Uinta	24.67 EFGH	Apex	1449.33 DEFG	Ϊ
Bavindir	5239.0 EF	HO	Apex	24.33 EFGH	Ranger	1357.33 EFG	T :
Cardinal	4862.0	FGH	Peruvian	24.00 FGH	Bayindir	1242.33 FG	L U U
WI -522	4808.0	GH	Moapa	23.67 GH	Cardinal	1224.67 FG	T :
Zia	4757.0	ЧIJ	Bavindir	23.67 GH	ZIA	1219.67 FG	ц Т
BANGER	4696.0	GH	Sonora	23.67 GH	WL-522	1207.00	ц С
l adak	4371.0	I	Mesa-Sirsa	23.33 H	Ladak	1182.67	I

climatic conditions of 17m/r ÷ 1 ÿ y

3 -modify Crude protein rates and yields, crude ash rates and yields of some alfalfa cultivars grown under the Table 2.

litions of Izmir	vields			Mean		- ⁽	AB	ABC	ABC	ARC.			BCDE	CDE		7 L 7 L	UEF	DEF	EFG	EFGH		E DL	GHI	Ī	= =	= ~				
latic conc	Crude ash (kg/ha		Crude ash (ko/he		Crude ash			175 67	10.011	1/3.33	169.33	165.33 /	164.67	150.001	100.001	146.00	144.00	136 00		134.0/	131.00	129.00	125.00	115.00		101.67	100.00	95.33	01 67	20.10
unerranean cun	0			Cultivars	Parivian	Mocro	ivioapa	IVIESA-SIrsa	Uinta	Scout	Sonora		wernal	Washoe	Caliverde			Cody	WL-202	Ranger	Anev	Vodu Z	2la	Cardinal	Ladak	WI -519	1			
	centages)		Mean yields	•				AB	ABC	ABCD			ABCUE	ABCDE	actor actor		BCUE	CDEF	DEF	DFF	I I I I		Ш	9 D	Ċ	5			
Molfon	ish perc	(%)		-	9.00	80.8	00.00	0.00	02.20	8.73	8.66	0270 77 0		α.45	8.45	8.38		0.0	8.22	8.13	8.08		5.0	7.98	7.93	7.63				
	Crude a		Culture	CUIIIVAIS	Wernal	l ahontan	Bandar	Colinerate	Callverue	Moapa	Peruvian	Scout	Mooboo	WASHUE	Cody	Mesa-Sirsa	710		Cardinal	Ladak	Sonora	Linta		Apex	WL-202	WL-522	:			
	ields		Meen	INICAL I	A	A				A	AB	BC BC			BCUE	CDEF			CUEFG	DEFG	EFG	FFG) (] [בדק	ភ្ម	9 D	(
	protein y	(kg/ha)			510.67	502.33	502 33	493 00		490.33	438.67	400.33	387.67	00.000	300.33	347.67	346 00		00.620	319,00	304.00	300.67		200.002	2/6.67	272.67	27.01			
	Crude		Cultivars		Peruvian	Moapa	Mesa-Sirsa	llinta		SUNOR	Scout	Washoe	WI -202		Caliverue	Wernal	Apex			Lanonian	Hanger	Bavindir	WI ESS	27C-1VV	21a 2	Cardinal				
	rcentages		Mean		ZA	7 A	3 AB	3 AB			3 ABC	3 ABC	7 ABC) ABCUE) ABCDE	7 RODEF				3 CDEF	, DEF			L L				
	led ulei	(%)			25.1	25.1	24.8	24.65	01 10	1.1	23.95	23.95	23.87	22 67		23.50	23.40	77 66	02 00		72.50	22.53	21 47			21.20				
			Cultivars		Moapa	Peruvian	Sonora	Mesa-Sirsa	Bavindir			Apex	Uinta	Caliverde	Meshee	Washoe	WL-522	Scout	Zia			Cardinal	Ladak	Mornal						

Crude Ash Rates and Yields: As it is indicated in the Table 2, there were again high variation among the cultivars tested. Vernal, Lahontan, Ranger, Caliverde, Moapa, Peruvian and Scout contained highest crude ash rates whereas Uinta, Apex, WL-202, WL-512 and Bayindir had the lowest rates. When we compare the cultivars in terms of crude ash yield the results showed a very different distribution from the percentage values. Crude ash yields were highest in Peruvian, Moapa, Mesa-Sirsa, Uinta, Scout and Sonora cultivars respectively. The same values in Ranger, Apex, Zia, Cardinal, Ladak, WL-512 and Bayindir were lowest.

When we consider the green matter and dry matter yields of cultivars, results reflected the superiority of none-hardy group of alfalfa cultivars characteristics including no dormancy period. These crops had a very long vegetation period and by means of this characteristics they could produce more biomass. Under the climatic conditions of Izmir-Turkey with a typical Mediterranean climate all none-hardy cultivars had also a very fast growth and higher number of clippings. On the contrary of the none-hardy group alfalfas, hardy types like Ranger, Ladak and Vernal were not high yielding cultivars because of the hot and dry weather conditions. This situation changed in the dry matter contents and hardy types had higher dry matter rates in relation to their morphological structures and leaf/stem ratios. But, since the green matter yields were higher in the none-hardy group, dry matter yield pattern among the cultivars were different from dry matter percentages and none-hardy cultivars were again more successful than hardy types in terms of dry matter yield. Similar results were observed in the crude ash contents of all alfalfa cultivars.

Based on the results of the experiment it could be concluded that none-hardy alfalfa cultivars were far more successful than hardy types. Hence, some cultivars in addition to the new ones were chosen to test in single crop nurseries.

1.2 Single crop selections

Material and Method: In this experiment conducted under the greenhouses and field conditions of Field Crop Dept. in Bornova/Izmir, individual plants of promising 13 cultivars were observed in relation to some characteristics such as earlyness, plant height, tillering, mid-leaf length and width, leafiness and some others.

Resultats and suggestions

First growth of alfalfa crops in spring: The climatic data of experimental area shows the mild structure of the Mediterranean winter conditions and if one can achieve a cultivar with fast growing habit and earliness in spring it seems quite feasible to breed a high yielding synthetic with a fast regrowth characteristic enabling more cuttings in a given period of time.

Data related to the observations of first growths indicated that Diabloverde was the earliest type and Moapa, Messa-Sirsa, Sonora followed this cultivar (Table 3).

Plant height of alfalfa crops in spring: As an indication of higher yields and suiting to cutting practices, Chilean, Peruvian, Sonora and Apex had the highest mean plant height values among the cultivars tested.

Rate of tillering: There were also significant differences among the cultivars in terms of tillering capacity which is an important component of yield characteristics. According to the results of scoring, Uinta, B-12, WL-202 and Diabloverde were at the top of the rank (Table 3).

Mid-leaflet length and width and leafiness of alfalfa crops: As it is always known that leaf/stem ratio is an important factor in hay quality. The measurements indicated the superiority of Moapa, Diabloverde, Zia and Chilean respectively. As another indication of leaf/steam ratio, leafiness scores were also given in Table 4. These observations indicated that B-12 and Uinta were the most successful crops with higher leaf/steam ratios.

The result of the measurements and observations of the many single plants from 13 different cultivars indicated that some single crops had higher yielding capacity. Considering the earlyness,

plant height, tillering, mid-leaf length and width, leafiness and other characteristics, different number of single crops have been selected for further studies. 36 crops of Moapa, 25 crops of Mesa-Sirsa, 25 crops of Peruvian, 25 crops of Diabloverde, 28 crops of Sonora, 15 crops of Zia, 17 crops of WL-202 and 14 crops of B-12 were among the plants selected.

Table 3. Data related to the different characteristics of single crops of cultivars

First growth of alfalfa crops in spring

Cultiva	Date	Cultivar	Date
Moapa Messa-Sirsa Peruvian Diabloverde Sonora Bayindir Chilean	07.03.1989 07.03.1989 10.03.1989 28.02.1989 07.03.1989 10.03.1989 10.03.1989	Apex Zia WL-202 B-12 Uinta Matador	15.03.1989 15.03.1989 15.03.1989 15.03.1989 15.03.1989 15.03.1989 10.03.1989

Plant height of alfalfa crops in spring

Cultivar	Number of crops	Mean	Standard deviation	Sd. Dev. of mean	Coefficient of variation
Moapa Messa-Sirsa Peruvian Diabloverde Sonora Bayindir Chilean Apex Zia WL-202 B-12 Liato	234 185 342 88 347 289 117 306 327 73 77 96	97.22 104.73 114.59 111.90 114.51 107.74 115.58 97.78 113.82 92.26 99.09	13.45 13.49 15.56 13.54 16.14 12.18 18.18 16.15 18.13 17.20 15.30	0.85 0.99 0.84 1.44 0.87 0.78 1.68 0.92 1.00 20.1 1.74	0.13 0.13 0.13 0.12 0.14 0.11 0.15 0.16 0.15 0.18 0.15 0.15
Matador	40	108.25	17.23	2.72	0.15

Rate of tillering (abundance of new tillers) of alfalfa crops

Cultivar	Number of crops	Max.	Mean	Min.	Standard deviation	Sd. dev. of mean	Coefficient of variation
Моара	239	5	3.74	2	0.51	0.030	0.13
Messa-Sirsa	188	5	3.79	2	0.51	0.037	0.13
Peruvian	342	5	3.62	2	0.53	0.028	0.14
Diabloverde	86	5	3.83	2	0.52	0.057	0.13
Sonora	350	5	3.73	2	0.54	0.029	0.16
Bayindir	295	5	3.27	2	0.53	0.030	0.16
Chilean	118	5	3.60	2	0.65	0.059	0.18
Apex	304	5	3.38	2	0.62	0.035	0.18
Zia	324	5	3.55	2	0.62	0.034	0.17
WL-202	71	5	3.97	2	0.47	0.056	0.11
B-12	75	5	4.16	3	0.77	0.089	0.18
Uinta	96	5	4.29	3	0.85	0.080	0.19
Matador	40	5	3.70	3	0.64	0.100	0.17

Cultiva	r	Number of crops	Mean (cm)	Standard deviation	Sd. Dev. of mean	Coefficient variation
Moapa	Width	238	10.48	2.52	0.16	0.24
	Length	238	23.56	5.85	0.38	0.24
Messa-Sirsa	Width	190	8.86	2.26	0.16	0.25
	Length	190	21.88	5.03	0.36	0.22
Peruvian	Width	337	7.70	2.49	0.13	0.32
(Length	337	21.70	5.71	0.31	0.26
Diabloverde	Width	85	8.10	3.56	0.38	0.43
	Length	85	23.10	6.76	0.72	0.29
Sonora	Width	345	6.98	3.28	0.17	0.46
	Length	345	20.95	6.64	0.35	0.31
Bayindir	Width	290	7.32	2.93	0.17	0.40
	Length	290	20.75	5.64	0.33	0.27
Chilean	Width	115	8.01	3.02	0.28	0.37
	Length	115	22.35	7.30	0.67	0.32
Apex	Width	307	6.20	2.84	0.16	0.45
	Length	307	18.99	5.03	0.28	0.26
Zia	Width	328	8.96	3.63	0.20	0.40
	Length	328	22.33	6.04	0.33	0.27
WL-202	Width	74	5.74	2.36	0.27	0.41
	Length	74	16.88	4.46	0.53	0.26
B-12	Width	75	6.67	2.69	0.30	0.40
	Length	75	17.83	5.04	0.57	0.28
Uinta	Width	94	7.84	2.50	0.25	0.31
	Length	94	18.61	4.52	0.46	0.24
Matador	Width	40	5.70	1.93	0.30	0.33
	Length	40	15.70	4.46	0.70	0.28

Table 4.	Mid-leaflet length and width and leafiness of alfalfa crops
	Mild foundt foriger and main and found found to be

Leafiness of alfalfa crops

Cultivar	Number of crops	Max.	Mean	Min.	Standard deviation	Sd. dev. of mean	Coefficient of variation
Моара	232	90	87.25	75	5.81	0.40	0.066
Messa-Sirsa	187	90	86.95	75	6.05	0.44	0.069
Peruvian	338	90	82.01	60	7.75	0.42	0.090
Diabloverde	89	90	76.51	60	5.07	0.53	0.066
Sonora	346	90	78.20	60	8.62	0.46	0.110
Bayindir	290	90	75.79	75	7.50	0.44	0.098
Chilean	118	90	78.68	75	6.48	0.59	0.080
Apex	313	90	80.70	75	7.29	0.41	0.090
Zia	330	90	77.96	60	6.71	0.36	0.080
WL-202	73	90	89.38	75	2.99	0.35	0.033
B-12	78	90	90.00	90	0.00	0.00	0.000
Uinta	96	90	89.62	75	2.15	0.21	0.023
Matador	41	90	89.26	75	3.27	0.51	0.030

3. STUDIES ON ANNUAL MEDICS

As it is mentioned before we believe that in the arid and semi-arid parts of the Aegean Region, soils should be kept covered with crops so as to maximise the production per unit area per unit time and to minimise the erosion.

In the Mediterranean region, most observers believe that a cereal-medic rotation is the best suited to the zone receiving 350-500 mm of rain annually. The coldest monthly average minimum

temperature acceptable for medic growing is about 2°C. The cold tolerance of medics become critical within the 350 to 500 mm rainfall zone at high elevations (Anonymous, 1975). For this reason, to decide what type of cereal-legume rotation to introduce the environment the constraints imposed by climate.

In Turkey, there are very much wide differences in climatic conditions, rainfall distribution in the country being very different from one part to the other. For instance, there is a corner at the Black Sea Coast which receives about 2,000 mm of rainfall annually, while there is another point in the Central Plateau which has only 250mm of annual rainfall. The other regions have annual rainfalls between these two extremes. In the eastern part of the country snow covers the soil for more than six months of the year, while in the west and south there is no snow at all.

The medics originate from around the Mediterranean Basin, where some 30 species are found growing as motive plants. Some medic species are now country-wide in distribution. Eraç (1982), Karagöz (1985) and Kurt *et al.* (1985) investigated some agronomic characteristics of medic species consist of local and introduced material. In a new experiment some local collections and two introductions of medics were compared under the Mediterranean climatic conditions of Bornova/Izmir. *Medicago blancheana, Medicago tuberculata, Medicago globosa, Medicago scutellata* represented the local material and *Medicago trunculata var. jemalong* and *Medicago littoralis var. harbinger* were introductions. The preliminary results of the experiment indicated that *Medicago scutellata* and *Medicago scutellata* were promising species for further studies (Table 5).

Our newly established projects aimed to enlarge the research material and to focus on the selection and breeding studies of medics suitable to the environmental conditions of region.

Medics	Green matter (g/plant)	Dry matter (g/plant)	Medics	Root weight (g/plant)	Medics	Leaf area (cm²)
M. scutellata	53.31 A	11.00 A	M. scutellata	2.92 A	M. scutellata	7.69 A
M. globosa	22.70 B	3.71 B	M. truncatula	0.47 B	M. truncatula	3.38 B
M. blancheana	17.90 C	3.70 B	M. blancheana	0.39 BC	M. tuberculata	2.99 B
M. truncatula	14.95 C	3.58 B	M. globosa	0.25 CD	M. blancheana	2.75 B
M. tuberculata	7.51 D	1.39 C	M. tuberculata	0.12 D	M. globosa	2.75 B
M. littoralis	3.60 D	0.62 C	M. littoralis	0.10 D	M. littoralis	0.64 C

Table 5. Some yield characteristics of annual medics (Medicago sp.) under Bornova conditions

REFERENCES

Anonymous, 1975. The return of medic, CIMMY today, Centro Internacional de Mejoramiento de Maizy Trigo, Apartado Postal 6-641, Mexico 6.

Avcioglu R., 1975. Effect of cutting time and cutting height on the yield and other characteristics of alfalfa. *Aegean University Agriculture Faculty Field Crop Dept.* (Unpublished Ph.D. Thesis), Izmir-Turkey.

Avcioglu R., Yildirim M.B. and Budak N., 1989. Studies of alfalfa strains for Mediterranean Region. Aegean University Research Fund, Project N° 1987/154, Izmir-Turkey.

Belton L. and Parsons D.K., 1981. Alfalfa yield demonstration. Forage and grain. Univ. Arizona, U.S. Dept. of Agric.

Eraç A., 1982. Investigations on the seed and hay yield and other related characteristics of some important annual medic species and cultivars. *Ankara University Agriculture Faculty Pub: 850, Ankara-Turkey.*

Hanson C.H., 1972. Alfalfa science and technology. American Soc. Agron. Inc. Publisher, Madison.

Karagöz A., 1985. Effect of different sowing densities on the hay and seed yields of some annual medics. *Ankara University Agriculture Faculty (Unpublished Ph.D. Thesis), Ankara-Turkey.*

Kurt Ö, Alinoglu N. and Özmen A.T., 1985. Nadas Uygulanan Bölgelerimizde Güzlük Tahilla Arkadas Bitki Olabileced ve Mer'a Islahinda Kullanilabileced Tekyillik Yonca Tür ve Varyetelerinin Saptanmast Üzerine Arastirmalar. *Tübitak, Toag Proje N° KBTBA-18, Ankara.*

Munzur M., 1987. Utilisation of fallow lands by means of annual forage legumes. Annual Medicago Expert Consultation, Ministry of Agriculture of the Republic of Tunisia and FAO Organisation, Tunisia.

Poehlman J.M., 1968. Breeding field crops. Holt and Camp. Inc., New York.

Tarman Ö., 1939. Anatolian alfalfa. Yük.Zir. Ens. Studies, Nº 87, Ankara-Turkey.